III-V Inversion-Layer Transport

  • S. M. Goodnick
  • D. K. Ferry


Application of an electric field normal to the surface of a semiconductor, such as in a metal-oxide-semiconductor (MOS) device, results in band bending and, for sufficiently strong fields, the formation of an inversion or accumulation layer. It has long been recognized(1) that the strong potential necessary to invert or accumulate the surface, shown schematically in Fig. 1, can quantize the motion of carriers normal to the surface and thus give rise to quasi-two-dimensional behavior for the parallel motion. The rationale for this is easily understood in the following context. Classically, the inversion-layer charge density falls to 1/e of its surface value in a distance over which the surface potential varies by an amount kT. Thus, if the total inversion density is 1012 cm-2, the effective classical width of the inversion layer is only about 5 Å. Clearly, when the electron wavelength is closer to 100 Å, one must expect quantization of the motion perpendicular to the oxide-semiconductor interface. Here the carriers are trapped in a potential well in which the discrete energy eigenvalues for the motion normal to the surface form the minima of a set of quasicontinuous two-dimensional (parallel to the surface) energy bands referred to as subbands. In many cases, these subbands are separated by energies on the order of 50 meV which is significant when compared to the thermal energy kT, even at room temperature.


Inversion Layer Accumulation Layer Subband Energy Lower Subband Indium Arsenide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Schrieffer, in: Semiconductor Surface Physics ( R. H. Kingston, ed.), pp. 55 - 69, Univ. Pennsylvania Press, Philadelphia (1957).Google Scholar
  2. 2.
    T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54, 437–672 (1982).ADSGoogle Scholar
  3. 3.
    R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett. 33, 665–667 (1978).ADSGoogle Scholar
  4. 4.
    T. Mimura, S. Hiyamizu, T. Fuji, and K. Nanbo, A new field-effect transistor with selectively doped Gaas/n-AlxGa1-xAs hetero junctions, Japan. J. Appl. Phys. 19, L225–L227 (1980).ADSGoogle Scholar
  5. 5.
    S. Mori and T. Ando, Electronic properties of a heavily-doped n-type Gaas-Ga1-xAlxAs super lattice, Surf. Sci. 98, 101–107 (1980).ADSGoogle Scholar
  6. 6.
    P. J. Price, Electron transport in polar heterolayers, Surf. Sci. 113, 199–210 (1982).ADSGoogle Scholar
  7. 7.
    F. Stern and W. E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit, Phys. Rev. 163, 816–835 (1967).Google Scholar
  8. 8.
    F. Fang and A. B. Fowler, Transport properties of electrons in inverted silicon surfaces, Phys. Rev. 169, 619–631 (1968).Google Scholar
  9. 9.
    C. W. Wilmsen, Chemical composition and formation of thermal and anodic oxide/III-V compound semiconductor interfaces, J. Vac. Sci. Technol. 19, 279–289 (1981).ADSGoogle Scholar
  10. 10.
    H. Ehrenreich, Electron scattering in Insb, J. Phys. Chem. Solids 2, 131–149 (1957).ADSGoogle Scholar
  11. 11.
    D. L. Rode, Electron transport in Insb, In As, and Inp, Phys. Rev. B 3, 3287–3299 (1971).Google Scholar
  12. 12.
    H. H. Wieder, Perspectives on III-V compound Mis structures, J. Vac. Sci. Technol. 15, 1498–1506 (1978).ADSGoogle Scholar
  13. 13.
    W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, Unified detect model and beyond, J. Vac. Sci. Technol. 17, 1019–1027 (1980).ADSGoogle Scholar
  14. 14.
    F. Herman, Electronic structure calculations of interfaces and overlayers in the 1980s, J. Vac. Sci. Technol. 16, 1101–1107 (1979).ADSGoogle Scholar
  15. 15.
    M. S. Daw, P. L. Smith, C. A. Swarts, and T. C. McGill, Surface vacancies in II–VI and III–V zinc blende semiconductors, J. Vac. Sci. Technol. 19, 508–512 (1981).ADSGoogle Scholar
  16. 16.
    W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, New and unified model for Schottky barrier and III–V insulator interface states formation, J. Vac. Sci. Technol. 16, 1422–1433 (1979).ADSGoogle Scholar
  17. 17.
    R. E. Allen and J. D. Dow, Unified theory of point-defect electronic states, core excitons, and intrinsic electronic states at semiconductor surfaces, J. Vac. Sci. Technol. 19, 383–387 (1981).ADSGoogle Scholar
  18. 18.
    J. F. Wager and C. W. Wilmsen, Plasma-enhanced chemical vapor deposited Sio2/Inp interface, J. Appl. Phys. 53, 5789–5797 (1982).ADSGoogle Scholar
  19. 19.
    R. P. Vasquez and F. J. Grunthaner, XPS study of interface formation of Cvd Sio2 on Insb, J. Vac. Sci. Technol. 19, 431–436 (1981).ADSGoogle Scholar
  20. 20.
    C. B. Duke, Optical absorption due to space-charge-localized states, Phys. Rev. 159, 632–644 (1967).Google Scholar
  21. 21.
    F. Stern, Self-consistent results for n-type Si inversion layers, Phys. Rev. B 5, 4891–4899 (1972).Google Scholar
  22. 22.
    M. E. Alfereiff and C. B. Duke, Energy and lifetime of space-charge-induced localized states, Phys. Rev. 168, 832–842 (1968).Google Scholar
  23. 23.
    G. A. Baraff and J. A. Appelbaum, Effect of electric and magnetic fields on the self-consistent potential at the surface of a degenerate semiconductor, Phys. Rev. B 5, 475–497 (1972).Google Scholar
  24. 24.
    S. Das Sarma, Energy levels of n-channel accumulation layer on Inp surface, Solid State Commun. 41, 483–485 (1982).ADSGoogle Scholar
  25. 25.
    T. Ando, Electron-electron interaction and electronic properties of space charge layers on semiconductor surfaces, Surf. Sci. 73, 1–18 (1978).ADSGoogle Scholar
  26. 26.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York (1972), pp. 446–452.MATHGoogle Scholar
  27. 27.
    H. Kroemer and Qi-Gao Zhu, On the interface connection rules for effective-mass wave function at an abrupt heterojunction between two semiconductors with different effective mass, J. Vac. Sci. Technol. 21, 551–554 (1982).ADSGoogle Scholar
  28. 28.
    J. F. Wager, K. Geib, C. W. Wilmsen, and L. L. Kazmerski, Native oxide formation and electrical instabilities at the insulator/Inp interface, J. Vac. Sci. Technol. B 1, 778–781 (1983).Google Scholar
  29. 29.
    E. Jahnke and F. Emde, Tables of Functions, Dover, New York (1945), p. 152.MATHGoogle Scholar
  30. 30.
    F. F. Fang and W. E. Howard, Negative field-effect mobility on (100) Si surfaces, Phys. Rev. Lett. 16, 797–799 (1966).ADSGoogle Scholar
  31. 31.
    S. Das Sarma, R. K. Kalia, M. Nakayama, and J. J. Quinn, Stress and temperature dependence of subband structure in silicon inversion layers, Phys. Rev. B 19, 6397–6406 (1979).Google Scholar
  32. 32.
    G. H. Kawamoto, J. J. Quinn, and W. L. Bloss, Subband structure of n-channel inversion layers on polar semiconductors, Phys. Rev. B 23, 1875–1886 (1981).Google Scholar
  33. 33.
    K. S. Yi and D. K. Ferry, Many-body effects on the subband structure of n-type surface space-charge layers in Inp, Phys. Rev. B 28, 1127–1129 (1983).Google Scholar
  34. 34.
    E. O. Kane, Band structure of indium antimonide, J. Phys. Chem. Solids 1, 249–261 (1957).ADSGoogle Scholar
  35. 35.
    F. J. Ohkawa and Y. Uemura, Quantized states of a narrow gap semiconductor, J. Phys. Soc. Japan 37, 1325–1333 (1974).ADSGoogle Scholar
  36. 36.
    A. Darr, J. P. Kotthaus, and T. Ando, in: Proceedings of the 13th International Conference on the Physics of Semiconductors, Rome ( F. G. Funi, ed.), pp. 774–777, North-Holland, Amsterdam (1976).Google Scholar
  37. 37.
    Y. Takada, K. Arai, N. Uchimura, and Y. Uemura, Theory of the electronic properties of n-channel inversion layers on narrow-gap semiconductors. I Subband structure of Insb, J. Phys. Soc. Japan 49, 1851–1858 (1980).ADSGoogle Scholar
  38. 38.
    A. Darr, J. P. Kotthaus, and J. F. Koch, Surface cyclotron resonance in Insb, Solid State Commun. 17, 455–458 (1975).ADSGoogle Scholar
  39. 39.
    A. Darr and J. P. Kotthaus, Magnetotransport in an inversion layer on p-Insb, Surf. Sci. 73, 549–559 (1978).ADSGoogle Scholar
  40. 40.
    G. E. Marques and L. J. Sham, Theory of space charge layers in narrow-gap semiconductors, Surf. Sci. 113, 131–136 (1982).ADSGoogle Scholar
  41. 41.
    L. J. Sham and M. Nakayama, Effective mass approximation in the presence of an interface, Phys. Rev. B 20, 734–747 (1979).Google Scholar
  42. 42.
    K. Weisinger, W. Beinvogel, and J. F. Koch, in: Proceedings of the 14th International Conference on the Physics of Semiconductors, Edinburgh (B. L. H. Wilson, ed.); Inst. Phys. Conf. Ser. 43 (Inst. Phys. London) 1215 (1979).Google Scholar
  43. 43.
    K. Weisinger, H. Reisinger, and F. Koch, The nonparabolicity parallel excitation mechanism and doublet peak problem in subband resonance, Surf. Sci. 113, 102–107 (1982).ADSGoogle Scholar
  44. 44.
    J. Scholz and F. Koch, Spectroscopy of electron subbands on Ge-(111), Solid State Commun. 34, 249–251 (1980).ADSGoogle Scholar
  45. 45.
    E. D. Siggia and P. C. Kwok, Properties of electrons in semiconductor inversion layers with many occupied electric subbands. I. Screening and impurity scattering, Phys. Rev. B 2, 1024–1036 (1970).Google Scholar
  46. 46.
    S. Mori and T. Ando, Intersubband scattering effect on the mobility of a Si(100) inversion layer at low temperatures, Phys. Rev. B 19, 6433–6441 (1979).Google Scholar
  47. 47.
    Y. Takada, Effects of screening and neutral impurity on mobility in silicon inversion layers under uniaxial stress, J. Phys. Soc. Japan 46, 114–122 (1979).ADSGoogle Scholar
  48. 48.
    H. Ezawa, Inversion layer mobility with intersubband scattering, Surf. Sci. 58, 25–32 (1976).Google Scholar
  49. 49.
    J. E. Stannard, T. A. Kennedy, and B. D. McCombe, Properties of surface carriers at Gaas-native oxide interfaces, J. Vac. Sci. Technol. 13, 869–872 (1976).ADSGoogle Scholar
  50. 50.
    L. G. Meiners, Electric properties of Sio2 and Si3N4 dielectric layers on Inp, J. Vac. Sci. Technol. 19, 373–379 (1981).ADSGoogle Scholar
  51. 51.
    E. M. Conwell, High Field Transport in Semiconductors, Academic Press, New York (1967).Google Scholar
  52. 52.
    F. Berz, Ionized impurity scattering in silicon surface channels, Solid-State Electron. 13, 903–906 (1970).ADSGoogle Scholar
  53. 53.
    J. L. Rutledge and W. E. Armstrong, Effective surface mobility theory, Solid-State Electron. 15, 215–219 (1972).ADSGoogle Scholar
  54. 54.
    C. T. Sah, T. H. Ning, and L. L. Tschopp, The scattering of electrons by surface oxide charges and by lattice vibrations at the silicon-silicon dioxide interface, Surf. Sci. 32, 561–575 (1972).ADSGoogle Scholar
  55. 55.
    Y. C. Cheng, Effect of charge inhomogeneities on silicon surface mobility, J. Appl. Phys. 44, 2425–2427 (1973).ADSGoogle Scholar
  56. 56.
    F. Stern, Image potential near a gradual interface between two dielectrics, Phys. Rev. B 17, 5009–5015 (1978).Google Scholar
  57. 57.
    F. Stern, Polarizability of a two-dimensional electron gas, Phys. Rev. Lett. 18, 546–548 (1967).ADSGoogle Scholar
  58. 58.
    P. F. Maldague, Many-body corrections to the polarizibility of the two-dimensional electron gas, Surf. Sci. 73, 296–302 (1978).ADSGoogle Scholar
  59. 59.
    F. Stern, Calculated temperature dependence of mobility in silicon inversion layers, Phys. Rev. Lett. 44, 1469–1472 (1980).ADSGoogle Scholar
  60. 60.
    Y. Matsumoto and Y. Uemura, Proceedings of the Second International Conference on Solid Surfaces, Kyota; Japan. J. Appl. Phys. Suppl. 2, Part 2, 367–370 (1974).Google Scholar
  61. 61.
    A. Yagi and M. Nakai, Coulomb scattering in the band tail of n-channel silicon Mosfets, Surf. Sci. 98, 174–180 (1980).ADSGoogle Scholar
  62. 62.
    A. Yagi and S. Kawaji, Effects of tailing of density of state on the mobility of Si-Mosfets at low temperatures—A proposal for the characterization of Si-Sio2 interfaces, Japan. J. Appl. Phys. 20, 909–915 (1981).ADSGoogle Scholar
  63. 63.
    K. Hess and C. T. Sah, Dipole scattering at the Si-Sio2 interface, Surf. Sci. 47, 650–654 (1975).ADSGoogle Scholar
  64. 64.
    E. Vass, R. Lassnig, and E. Gornik, Electron mobility analysis of n-Si inversion layers, Surf. Sci. 113, 223–227 (1982).ADSGoogle Scholar
  65. 65.
    S. T. Pantelides and M. Long, in: The Physics ofSio2 and Its Interfaces ( S. T. Pantelides, ed.), pp. 339–343, Pergamon Press, New York (1978).Google Scholar
  66. 66.
    O. L. Krivanek and J. H. Mazur, The structure of ultrathin oxide on Sio2, Appl. Phys. Lett. 37, 392–394 (1980).ADSGoogle Scholar
  67. 67.
    J. M. Ziman, Electrons and Phonons ( 2nd Ed. ), Oxford Univ. Press, Oxford (1979), pp. 456–460.Google Scholar
  68. 68.
    R. F. Greene, in: Molecular Processes on Solid Surfaces ( E. Draugle, R. D. Gretz, and R. J. Jaffee, eds.), pp. 239–263, McGraw-Hill, New York (1969).Google Scholar
  69. 69.
    R. E. Prange and Tsu-Wei Nee, Quantum spectroscopy of the low-field oscillations in the surface impedance, Phys. Rev. 168, 779–786 (1968).ADSGoogle Scholar
  70. 70.
    J. Mertsching and H. J. Fishbeck, Surface scattering of electrons in magnetic surface states, Phys. Status Solidi 41, 45–46 (1970).ADSGoogle Scholar
  71. 71.
    A. V. Chaplik and M. V. Entin, Energy spectrum and electron mobility in a thin film with non-ideal boundary, Sov. Phys.—JETP 28, 514–517 (1969).ADSGoogle Scholar
  72. 72.
    M. V. Entin, Surface mobility of electron with quantizing band bending, Sov. Phys.—Solid State 11, 781–783 (1969).Google Scholar
  73. 73.
    Y. C. Cheng, Electron mobility in an Mos inversion layer, Proceedings of the Third Conference on Solid Devices, Tokyo; Japan. J. Appl. Phys. Suppl. 41, 173–180 (1972).Google Scholar
  74. 74.
    Y. C. Cheng, On the scattering of electrons in magnetic and electric surface states by surface roughness, Surf. Sci. 27, 663–666 (1971).ADSGoogle Scholar
  75. 75.
    T. Ando, Screening effect and quantum transport in a silicon inversion layer in strong magnetic fields, J Phys. Soc. Japan 43, 1616–1626 (1977).ADSGoogle Scholar
  76. 76.
    M. Saitah, Warm electrons on liquid 4He surface, J. Phys. Soc. Japan 42, 201–209 (1977).ADSGoogle Scholar
  77. 77.
    B. T. Moore and D. K. Ferry, Scattering of inversion layer electrons by oxide polar mode generated interface phonons, J. Vac. Sci. Technol. 17, 1037–1040 (1980).ADSGoogle Scholar
  78. 78.
    K. von Klitzing, Th. Englert, and D. Fritzsche, Transport measurements on Inp inversion metal-oxide-semiconductor transistors, J. Appl. Phys. 51, 5893–5897 (1980).ADSGoogle Scholar
  79. 79.
    T. Sugano, Physical and chemical properties of Si-Sio2 transition regions, Surf Sci. 98, 145–153 (1980).ADSGoogle Scholar
  80. 80.
    S. M. Goodnick, R. G. Gann, D. K. Ferry, C. W. Wilmsen, and O. L. Krivanek, Surface roughness induced scattering and band tailing, Surf Sci. 113, 233–238 (1982).ADSGoogle Scholar
  81. 81.
    S. M. Goodnick, R. G. Gann, J. R. Sites, D. K. Ferry, C. W. Wilmsen, D. Fathy, and O. L. Krivanek, Surface roughness scattering at the Si-Sio2 interface, J. Vac. Sci. Technol. B 1, 803–808 (1983).Google Scholar
  82. 82.
    F. Stern, Effect of a thin transition layer at a Si-Sio2 interface on electron mobility and energy levels, Solid State Commun. 21, 163–166 (1977).ADSGoogle Scholar
  83. 83.
    P. J. Price and F. Stern, Carrier confinement effects, Surf. Sci. 132, 577–593 (1983).ADSGoogle Scholar
  84. 84.
    D. K. Ferry, Optical and intervalley scattering in quantized inversion layers in semiconductors, Surf. Sci. 57, 218–228 (1976).ADSGoogle Scholar
  85. 85.
    D. K. Ferry, K. Hess, and P. Vogl, in: VLSI Electronic Microstructure Science (N. Einspruch, ed.), Vol. 2, pp. 67–103, Academic Press, New York (1983).Google Scholar
  86. 86.
    S. Kawaji, The two-dimensional lattice scattering mobility in a semiconductor inversion layer, J. Phys. Soc. Japan 27, 906–908 (1969).ADSGoogle Scholar
  87. 87.
    H. Ezawa, T. Kuroda, and K. Nakamura, Surfaces and the electron mobility in a semiconductor inversion layer, Surf. Sci 27, 218–220 (1971).ADSGoogle Scholar
  88. 88.
    E. Vass and K. Hess, Energy loss of warm and hot carriers in surface inversion layers of polar semiconductors, Z. Phys. B 25, 323–325 (1976).Google Scholar
  89. 89.
    D. K. Ferry, Scattering by polar-optical phonons in a quasi-two-dimensional semiconductor, Surf. Sci. 75, 86–91 (1978).ADSMathSciNetGoogle Scholar
  90. 90.
    S. Q. Wang and G. D. Mahan, Electron scattering from surface excitations, Phys. Rev. B, 6, 4517–4524 (1972).Google Scholar
  91. 91.
    K. Hess and P. Vogl, Remote polar phonon scattering in silicon inversion layers, Solid State Commun. 30, 807–809 (1979).ADSGoogle Scholar
  92. 92.
    D. A. Baglee, D. K. Ferry, C. W. Wilmsen, and H. H. Wieder, Inversion layer transport and properties of oxides on InAs, J. Vac. Sci. Technol. 17, 1032–1036 (1980).ADSGoogle Scholar
  93. 93.
    S. Kawaji and Y. Kawaguchi, Proceedings of the International Conference on the Physics of Semiconductors, Kyoto; Galvanomagnetic properties of surface layers in indium arsenide, J. Phys. Soc. Japan 21, Suppl, 336–340 (1966).Google Scholar
  94. 94.
    D. K. Ferry, Transport of hot carriers in semiconductor quantized inversion layers, Solid-State Electron. 21, 115–121 (1978).ADSGoogle Scholar
  95. 95.
    L. Esaki and L. L. Chang, Semiconductor superfine structures by computer-controlled molecular beam epitaxy, Thin Solid Films 36, 285–298 (1976).ADSGoogle Scholar
  96. 96.
    S. Kawaji, H. Huff, and H. C. Gates, Field effect on magnetoresistance of n-type indium antimonide, Surf Sci. 3, 234–242 (1965).ADSGoogle Scholar
  97. 97.
    S. Kawaji and H. C. Gatos, The role of surface treatment in the field effect anomaly of n-type Insb at high magnetic fields, Surf. Sci. 6, 362–368 (1967).ADSGoogle Scholar
  98. 98.
    S. Kawaji and H. C. Gatos, Electric field effect on the magnetoresistance of indium arsenide surfaces in high magnetic fields, Surf. Sci. 7, 215–228 (1967).ADSGoogle Scholar
  99. 99.
    A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Magnetooscillatory conductance in silicon surfaces, Phys. Rev. Lett. 16, 901–903 (1966).ADSGoogle Scholar
  100. 100.
    D. C. Tsui, Observation of surface bound state and two-dimensional energy band by electron tunneling, Phys. Rev. Lett. 24, 303–306 (1970).ADSGoogle Scholar
  101. 101.
    D. C. Tsui, Electron-tunneling studies of a quantized surface accumulation layer, Phys. Rev. B 4, 4438–4449 (1971).Google Scholar
  102. 102.
    D. C. Tsui, Electron tunneling and capacitance studies of a quantized surface accumulation layer, Phys. Rev. B 8, 2657–2669 (1973).ADSGoogle Scholar
  103. 103.
    D. C. Tsui, Landau-level spectra of conduction electrons at an InAs surface, Phys. Rev. B 12, 5739–5748 (1975).ADSGoogle Scholar
  104. 104.
    R. J. Wagner, T. A. Kennedy, and H. H. Wieder, in: Proceedings of the Third International Conference of Narrow Gap Semiconductors ( J. Rauluskiewicz, M. Gorska, and E. Kaczmarek, eds.), pp. 427–432, PWN-Polish Scientific Publishers, Warsaw (1977).Google Scholar
  105. 105.
    R. J. Wagner, T. A. Kennedy, and H. H. Wieder, Magneto-transconductance study of surface accumulation layers in InAs, Surf. Sci. 73, 545 (1978).ADSGoogle Scholar
  106. 106.
    H. Washburn and J. R. Sites, Oscillatory transport coefficients in InAs surface layers, Surf. Sci. 73, 537–544 (1978).ADSGoogle Scholar
  107. 107.
    H. Washborn, J. R. Sites, and H. H. Wieder, Electronic profile of n-InAs on semi-insulating Gaas, J. Appl. Phys. 50, 4872–4878 (1979).ADSGoogle Scholar
  108. 108.
    G. A. Anticliffe, R. T. Bates, and R. A. Reynolds, in: Proceedings of the Conference on the Physics of Semimetals and Narrow Gap Semiconductors, Dallas (D. L. Carter and R. T. Bate, eds.) Oxford, New York, Pergamon Press (1971); J. Phys. Chem. Solids 32, Suppl. 1, 499–510 (1970).Google Scholar
  109. 109.
    H. Reisinger and F. Koch, Spectroscopy of InAs subbands, Solid State Commun. 37, 429–431 (1981).ADSGoogle Scholar
  110. 110.
    H. Reisinger, H. Schaber, and R. E. Doezema, Magnetoconductance studies of accumu-lation layers on n-InAs, Phys. Rev. B 24, 5960–5969 (1981).Google Scholar
  111. 111.
    R. E. Doezema, M. Nealon, and S. Whitmore, Hybrid quantum oscillations in a surface space-charge layer, Phys. Rev. Lett. 45, 1593–1596 (1980).ADSGoogle Scholar
  112. 112.
    M. Nealon, S. Whitmore, R. R. Bourassa, and R. E. Doezema, Determination of subband population in tipped magnetic fields, Surf. Sci. 113, 282–286 (1982).ADSGoogle Scholar
  113. 113.
    Y. Katayama, N. Kotera, and K. F. Komatsubara, Tunable infrared detector using photoconductivity of the quantized surface inversion layer of Mos transistor, J. Japan. Soc. Appl. Phys. 40, Suppl., 214–218 (1971).Google Scholar
  114. 114.
    N. Kotera, Y. Katayama, and K. F. Komatsubara, Magnetoconductance oscillations of n-type inversion layers in Insb surfaces, Phys. Rev. B 5, 3065–3078 (1972).ADSGoogle Scholar
  115. 115.
    W. Beinvogel and J. F. Koch, Spectroscopy of electron subband levels in an inversion layer on Insb, Solid State Commun. 24, 687–690 (1977).ADSGoogle Scholar
  116. 116.
    W. Beinvogel and J. F. Koch, Spectroscopy of electron subband levels in an inversion layer on Insb, Surf. Sci. 73, 547–548 (1978).ADSGoogle Scholar
  117. 117.
    M. Horst, U. Merkt, and J. P. Kotthaus, Cyclotron resonance studies of the electron- phonon interaction in inversion layers of p-Insb, Surf. Sci. 113, 315–317 (1982).ADSGoogle Scholar
  118. 118.
    K. Arai, M. S. Thesis, University of Tokyo (1977) (in Japanese).Google Scholar
  119. 119.
    Y. Takada, Theory of electronic properties in n-channel inversion layers on narrow- gap semiconductors. II. Inter-subband optical absorption on Insb, J. Phys. Soc. Japan 50, 1998–2005 (1981).ADSGoogle Scholar
  120. 120.
    K. von Klitzing, Th. Englert, E. Bangert, and D. Fritzche, in Proceedings of the 15th International Conference on the Physics of Semiconductors, Kyoto; J. Phys. Soc. Japan 49, Suppl. A, 979–982 (1980).Google Scholar
  121. 121.
    H. C. Cheng and F. Koch, Magnetoconductance studies on Inp surfaces, Solid State Commun. 37, 911–913 (1981).ADSGoogle Scholar
  122. 122.
    H. C. Cheng and F. Koch, Electron subbands on Inp, Surf. Sci. 113, 287–289 (1982).ADSGoogle Scholar
  123. 123.
    H. C. Cheng and F. Koch, Electron subbands on Inp, Phys. Rev. B 26, 1989–1998 (1982).Google Scholar
  124. 124.
    H. L. Stormer, R. Dingle, A. C. Gossard, N. Wiegmann, and M. D. Sturge, Two-dimensional electron gas at a semiconductor-semiconductor interface, Solid State Commun. 29, 705–709 (1979).ADSGoogle Scholar
  125. 125.
    R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, 2-D electrical transport in Gaas-AlxGa1-xAs multilayers at high magnetic fields, Surf. Sci. 98, 134 (1980).Google Scholar
  126. 126.
    L. L. Chang and L. Esaki, Electronic properties of InAs-Gasb superlattices, Surf. Sci. 98, 70–89 (1980).ADSGoogle Scholar
  127. 127.
    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Zero-resistance state of two-dimensional electrons in a quantizing magnetic field, Phys. Rev. B 25, 1405–1407 (1982).Google Scholar
  128. 128.
    J. R. Sites and H. H. Wieder, Surface and bulk charge carrier transport in InAs epilayers, CRC Crit. Rev. Solid-State Sci 5, 385–389 (1975).Google Scholar
  129. 129.
    H. H. Wieder, Charge carrier transport in gate-voltage-controlled heteroepitaxial indium arsenide layers, Thin Solid Films 41, 185–195 (1977).ADSGoogle Scholar
  130. 130.
    H. Terao, T. Ito, and Y. Sakai, Interface properties of InAs-Mis structures and their application to Fet, Elec. Eng. Japan, 94, 127–132 (1974).Google Scholar
  131. 131.
    D. A. Baglee, D. H. Laughlin, B. T. Moore, B. L. Eastep, D. K. Ferry, and C. W. Wilmsen, in: Galium Arsenide and Related Compounds ( H. W. Thim, ed.), pp. 259–265, Institute of Physics, Bristol (1980).Google Scholar
  132. 132.
    A. Hartstein, T. H. Ning, and A. B. Fowler, Electron scattering in silicon inversion layers by oxide charge and surface roughness, Surf. Sci. 58, 178–181 (1976).ADSGoogle Scholar
  133. 133.
    E. Yamaguchi and M. Minakata, Magnetoconductance study of inversion layers on Inas metal-insulator-semiconductor field-effect transistors, Appl. Phys. Lett. 43, 965–967 (1983).ADSGoogle Scholar
  134. 134.
    K. F. Komatsubara, H. Kamioka, and Y. Katayama, Electrical conductivity in an n-type surface inversion layer of Insb at low temperature, J. Appl. Phys. 40, 2940–2944 (1969).ADSGoogle Scholar
  135. 135.
    D. L. Lile, D. A. Collins, L. G. Meiners, and L. Messick, n-Channel inversion mode Inp Misfet, Electron. Lett. 14, 657–659 (1978).Google Scholar
  136. 136.
    L. Messick, D. L. Lile, and A. R. Clawson, A microwave Inp/Sio2 Misfet, Appl. Phys. Lett. 32, 494–495 (1978).ADSGoogle Scholar
  137. 137.
    D. Fritzsche, Inp-Sio2 Mis structure with reduced interface state density near conduction band, Electron. Lett. 14, 51–52 (1978).Google Scholar
  138. 138.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Inversion layers on Inp, J. Vac. Sci. Technol. 16, 1458–1461 (1979).ADSGoogle Scholar
  139. 139.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Microwave gain from an n-channel enhancement-mode Inp Misfet, Electron. Lett. 15, 578 (1979).Google Scholar
  140. 140.
    L. Messick, Power gain and noise of Inp and Gaas insulated gate microwave Fets, Solid-State Electron. 22, 71–76 (1979).ADSGoogle Scholar
  141. 141.
    D. Fritzsche, in: Insulating Films on Semiconductors, ( G. G. Roberts and M. J. Morant, eds.), pp. 258–265, Institute of Physics, Bristol (1980).Google Scholar
  142. 142.
    L. Messick, A high-speed monolithic Misfet integrated logic inverter, IEEE Trans. Electron. Devices ED-28, 218–221 (1981).Google Scholar
  143. 143.
    T. Kawakami and M. Okamura, Inp/Al2O3 n-channel inversion-mode Misfets using sulphur-diffused source and drain, Electron. Lett. 15, 502–504 (1979).ADSGoogle Scholar
  144. 144.
    K. Kamimura and Y. Sakai, The properties of Gaas-Al2O3 and Inp-Al2O3 interfaces and the fabrication of Mis field-effect transistors, Thin Solid Films 56, 215–223 (1979).ADSGoogle Scholar
  145. 145.
    P. N. Farennec, M. LeContellec, H. L’Haridon, G. P. Pelous, and J. Richard, Al/Al2O3 /Inp Mis structures, Appl. Phys. Lett. 34, 807–808 (1979).ADSGoogle Scholar
  146. 146.
    M. Okamura and T. Kobayashi, Current drifting behavior in Inp Misfet with thermally oxidized Inp/Inp interface, Electron. Lett. 17, 941–942 (1981).Google Scholar
  147. 147.
    M. Okamura and T. Kobayashi, Slow current-drift mechanism in n-channel inversion type Inp-Misfet, Japan. J. Appl. Phys. 19, 2143–2150 (1980).ADSGoogle Scholar
  148. 148.
    M. Okamura and T. Kobayashi, Improved interface in inversion-type Inp-Misfet by vapor etching technique, Japan. J. Appl. Phys. 19, 2151–2156 (1980).ADSGoogle Scholar
  149. 149.
    Y. Hirota, M. Okamura, E. Yamaguchi, T. Nishioka, Y. Shinoda, and T. Kobayashi, Surface controlled Inp-Mis (metal-insulator-semiconductor) triodes, J. Appl. Phys. 52, 3498–3503 (1981).ADSGoogle Scholar
  150. 150.
    T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda, and Y. Hirota, Effect of pyrolytic Al2O3 deposition temperature on inversion-mode metal-insulator-semiconductor field effect transistor, J. Appl. Phys. 52, 6434–6436 (1981).ADSGoogle Scholar
  151. 151.
    Y. Hirayama, H. M. Park, F. Koshiga, and T. Sugano, Enhancement type Inp metal-insulator-semiconductor field-effect transistor with plasma anodic aluminum oxide as the gate insulator, Appl. Phys. Lett. 40, 712–713 (1982).ADSGoogle Scholar
  152. 152.
    K. P. Pande and S. Pourdavoud, Sr., Ge3N4-Inp Mis structures, IEEE Trans. Electron. Devices Lett. EDL-2, 182–184 (1981).Google Scholar
  153. 153.
    J. Woodward, G. T. Brown, B. Cockayne, and D. C. Cameron, Substrate effects on performance of Inp Mosfets, Electron. Lett. 18, 415–417 (1982).ADSGoogle Scholar
  154. 154.
    A. Yamamoto, A. Shibukawa, M. Yamaguchi, and C. Uemura, Low temperature (~77 K) properties of Inp Mosfets using anodic-oxide gate insulator, Electron. Lett. 18, 710–711 (1982).Google Scholar
  155. 155.
    T. Sawada and H. Hasagawa, Inp high mobility enhancement Misfets using anodically grown double-layer gate insulator, Electron. Lett. 18, 742–743 (1982).Google Scholar
  156. 156.
    Y. Shinoda and T. Kobayashi, Ingaasp n-channel inversion-mode metal-insulator-semiconductor field-effect transistor with low interface state density, J. Appl. Phys. 52, 6386–6394 (1981).ADSGoogle Scholar
  157. 157.
    I. Eisele and G. Dorda, Negative magnetoresistance in n-channel (100) silicon inversion layers, Phys. Rev. Lett. 32, 1360–1363 (1974).ADSGoogle Scholar
  158. 158.
    H. H. Wieder, A. R. Clawson, D. I. Elder, and D. A. Collins, Inversion-mode insulated gate Ga0.54In0.53AS field-effect transistors, IEEE Trans. Electron. Devices Lett. EDL-2, 73–74 (1981).Google Scholar
  159. 159.
    A. S. H. Liao, R. F. Leheny, R. E. Nahory, and J. C. DeWinter, An In0.53Ga0.47As/Si3N4 n-channel inversion mode Misfet, IEEE Trans. Electron. Devices Lett. EDL-2, 288–290 (1981).Google Scholar
  160. 160.
    A. S. H. Liao, B. Tell, R. F. Leheny, and T. Y. Cheng, In0.53Ga0.47As n-channel native oxide inversion mode field-effect transistor, Appl. Phys. Lett. 41, 280–282 (1982).ADSGoogle Scholar
  161. 161.
    K. Ishi, T. Sawada, H. Ohno, and H. Hasagawa, Ingaas enhancement-mode Misfets using double-layer gate insulator, Electron. Lett. 18, 1034–1036 (1982).Google Scholar
  162. 162.
    H. H. Wieder, in: Insulating Films on Semiconductors, ( G. G. Roberts and M. J. Morant, eds.), pp. 234–250, Institute of Physics, Bristol (1980).Google Scholar
  163. 163.
    Y. Shinoda, M. Okamura, E. Yamaguchi, and T. Kobayashi, Ingaas n-channel inversion mode Misfet, Japan. J. Appl. Phys. 19, 2301–2302 (1980).ADSGoogle Scholar
  164. 164.
    S. Jodaprawira, W. I. Wang, P. C. Chao, C. E. C. Wood, D. W. Woodward, and L. F. Eastman, Modulation-doped MBE Gaas/n-AlxGa1-xAs Mesfets, IEEE Trans. Electron. Devices Lett. EDL-2, 14–15 (1981).Google Scholar
  165. 165.
    K. Muro, S. Narita, S. Hiyamizu, K. Nanbu, and H. Hashimoto, Far-infrared cyclotron resonance of two-dimensional electrons in an AlxGa1-xAs /Gaas heterojunction, Surf. Sci. 113, 321–325 (1982).ADSGoogle Scholar
  166. 166.
    D. C. Tsui, A. C. Gossard, G. Kaminsky, and W. Wiegmann, Transport properties of Gaas-AlxGa1-xAs heterojunction field-effect transistors, Appl. Phys. Lett. 39, 712–714 (1981).ADSGoogle Scholar
  167. 167.
    D. C. Tsui, A. C. Gossard, G. Kaminsky, and W. Wiegmann, Transport properties of Gaas IGFets, Surf. Sci. 113, 464–466 (1982).ADSGoogle Scholar
  168. 168.
    H. L. Stormer, A. C. Gossard, and W. Wiegmann, Observation of intersubband scattering in a two-dimensional system, Solid State Commun. 41, 707–709 (1982).ADSGoogle Scholar
  169. 169.
    R. D. Thorn, F. J. Renda, W. J. Parrish, and T. L. Koch, A Monolithic Insb Charge-Coupled Infrared Imaging Device, International Electron Devices Meeting, Washington, D.C. (December 1978).Google Scholar
  170. 170.
    J. D. Langan and C. R. Visawanthen, Characterization of improved Insb interfaces, J. Vac. Sci. Technol. 16, 1474–1477 (1979).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • S. M. Goodnick
    • 1
  • D. K. Ferry
    • 1
  1. 1.Department of Electrical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations