Skip to main content

Electrical Properties of Insulator-Semiconductor Interfaces on III-V Compounds

  • Chapter
Physics and Chemistry of III-V Compound Semiconductor Interfaces

Abstract

An enormous amount of theoretical and experimental work has been published on metal-insulator-semiconductor (MIS) structures which employ thermally oxidized silicon. The technology of these devices has reached a level of perfection which permits the formation of insulator- semiconductor interfaces in which essentially no extraneous charge-trapping mechanisms are present. The understanding of such structures has reached a level which permits the design and large-scale technological applications of MIS transistors and MIS integrated circuits. Although several other semiconductors appear to be superior to silicon for certain MIS applications, such as microwave logic and signal processing, the understanding of the surface properties of the alternative semiconductors is in a primitive state. The dielectrics that have been tried on such semiconductors always have exhibited larger amounts of charge trapping at the interface and greater frequency dispersion of the electrical properties of the insulator than those attainable on thermally oxidized silicon. In fact, the surface properties are, in many cases, so poor that comparison between experiment and theoretical models developed for silicon can be very difficult and often confusing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Hofstein and G. Warfield, Solid-State Electron 8, 321 (1965).

    ADS  Google Scholar 

  2. F. P. Heiman, IEEE Trans. Electron. Devices ED-14, 781 (1967).

    Google Scholar 

  3. A. Goetzberger, E. Klausmann, and M. Schulz, CRC Crit. Rev. Solid-State Sci. 6, 1 (1976).

    Google Scholar 

  4. S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York, 1969, p. 436.

    Google Scholar 

  5. S. Schottky, Naturwissenschaften, 26, 843 (1938).

    ADS  Google Scholar 

  6. L. M. Terman, Solid-State Electron. 5, 285 (1962).

    ADS  Google Scholar 

  7. C. N. Berglund, IEEE Trans. Electron. Devices ED-13, 701 (1966).

    Google Scholar 

  8. C. Hilsum, Prog. Semicond. 9, 137 (1965).

    Google Scholar 

  9. J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Englewood Cliffs, NJ (1971), p. 53.

    Google Scholar 

  10. L. G. Meiners, Electrical properties of the gallium arsenide-insulator interface, J. Vac. Sci. Technol. 15, 1402–1407 (1978).

    ADS  Google Scholar 

  11. L. G. Meiners, Surface potential of anodized p–Gaas Mos capacitors, Appl. Phys. Lett. 33, 747–748 (1978).

    ADS  Google Scholar 

  12. E. Kohn and H. L. Hartnagel, On the interpretation of electrical measurements on the Gaas-Mos system, Solid-State Electron. 21, 409–416 (1978).

    ADS  Google Scholar 

  13. D. Gerlich, Beat frequency bridge for large signal field effect, J. Appl. Phys. 33, 1815–1816 (1962).

    ADS  Google Scholar 

  14. M. H. Pilkuhn, Study of gallium arsenide surfaces, J. Phys. Chem. Solids 25, 141–146 (1964).

    ADS  Google Scholar 

  15. I. Flinn and M. Briggs, Surface measurements on gallium arsenide, Surf. Sci. 2, 136–145 (1964).

    Google Scholar 

  16. D. N. Butcher and B. J. Sealy, Electrical properties of thermal oxides on Gaas, Electron. Lett. 13, 558–559 (1977).

    Google Scholar 

  17. H. Hasegawa, K. E. Forward, and H. L. Hartnagel, New anodic native oxide of Gaas with improved dielectric and interface properties, Appl. Phys. Lett. 12, 567–569 (1975).

    ADS  Google Scholar 

  18. G. Weimann and W. Schlapp, Anodic oxidation of gallium arsenide, Thin Solid Films 38, L5–L7 (1976).

    ADS  Google Scholar 

  19. G. Weimann, Oxide and interface properties of anodic oxide Mos structures on III-V compound semiconductors, Thin Solid Films 56, 173–182 (1979).

    ADS  Google Scholar 

  20. S. Varadarajan, M. A. Littlejohn, and J. R. Hauser, Inversion and accumulation layer formation at elevated temperatures in n-type Gaas-anodic oxide Mis devices, Thin Solid Films 56, 235–242 (1979).

    ADS  Google Scholar 

  21. T. Sawada and H. Hasegawa, Interface state band between Gaas and its anodic native oxide, Thin Solid Films 56, 183–200 (1979).

    ADS  Google Scholar 

  22. G. Sixt, K. H. Ziegler, and W. R. Fahrner, Properties of anodic oxide films on n-type Gaas, Gaas0.6P0.4 and GaP, Thin Solid Films 56, 107–116 (1979).

    ADS  Google Scholar 

  23. C. R. Zeisse, L. J. Messick, and D. L. Lile, Electrical properties of anodic and pyrolytic dielectrics on gallium arsenide, J. Vac. Sci. Technol. 14, 957–960 (1977).

    ADS  Google Scholar 

  24. A. Shimano, A. Moritani, and J. Nakai, Gaas-Mos capacitor with native oxide film anodized in nonaqueous elecltrolyte, Solid-State Electron. 21, 1149–1152 (1978).

    ADS  Google Scholar 

  25. B. M. Arora and A. M. Narsale, Electrical instabilities of Al-anodic oxide-n-Gaas Mos structures and the effect of annealing, Thin Solid Films 56, 153–161 (1979).

    ADS  Google Scholar 

  26. R. P. F. Chang and A. K. Sinha, Plasma oxidation of Gaas, Appl. Phys. Lett. 29, 56–58 (1976).

    ADS  Google Scholar 

  27. L. A. Chesler and G. Y. Robinson, DC plasma anodization of Gaas, Appl. Phys. Lett. 32, 60–62 (1978).

    Google Scholar 

  28. L. A. Chesler and G. Y. Robinson, Plasma anodization of Gaas in a dc discharge, J. Vac. Sci. Technol. 15, 1525–1529 (1978).

    ADS  Google Scholar 

  29. K. Yamasaki and T. Sugano, Determination of the interface states in Gaas Mos diodes by deep-level transient spectroscopy, Appl. Phys. Lett. 35, 932–934 (1979).

    ADS  Google Scholar 

  30. Y. Hirayama, F. Koshiga, and T. Sugano, Capacitance-voltage characteristics of AI- plasma anodic Al2O3-Gaas diodes, J. Appl. Phys. 52, 4697–4699 (1981).

    ADS  Google Scholar 

  31. N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, Low-temperature plasma oxida-tion of Gaas, Appl Phys. Lett. 32, 58–60 (1978).

    ADS  Google Scholar 

  32. R. P. H. Chang and J. J. Coleman, A new method of fabricating gallium arsenide Mos devices, Appl. Phys. Lett. 32, 332–333 (1978).

    Google Scholar 

  33. F. Koshiga and T. Sugano, The anodic oxidation of Gaas in an oxygen plasma generated by a D.C. electrical discharge, Thin Solid Films 56, 39–49 (1979).

    ADS  Google Scholar 

  34. R. Hall and J. P. White, Surface capacity of oxide coated semiconductors, Solid-State Electron 8, 211–226 (1965).

    ADS  Google Scholar 

  35. H. Becke, R. Hall, and J. White, Gallium arsenide Mos transistors, Solid-State Electron. 8, 813–823 (1965).

    ADS  Google Scholar 

  36. H. W. Becke and J. P. White, Gallium arsenide Fets outperform conventional silicon Mos devices, Electronics 40 (12), 82–89 (1967).

    Google Scholar 

  37. W. Kern and J. P. White, Interface properties of chemically vapor deposited silica films on gallium arsenide, RCA Rev. 31, 771–783 (1970).

    Google Scholar 

  38. J. E. Foster and J. M. Swartz, Electrical characteristics of the silicon nitride-gallium aresnide interface, J. Electrochem. Soc. 117, 1410–1417 (1970).

    Google Scholar 

  39. H. Klose, Y. E. Maronchuk, and O. V. Senoshenko, On the photo-capacitance of the Mis structure Al-Si3N4-n-Gaas, Phys. Status Solidi A 21, 659–664 (1974).

    ADS  Google Scholar 

  40. T. Ito and Y. Sakai, The Gaas inversion-type Mis transistors, Solid-State Electron. 17, 751–759 (1974).

    ADS  Google Scholar 

  41. W. Y. Lum and H. H. Wieder, Thermally converted surface layers in semi-insulating Gaas, Appl. Phys. Lett. 31, 213–215 (1977).

    ADS  Google Scholar 

  42. T. Mimura, K. Odani, N. Yokoyama, Y. Nakayama, and M. Fukuta, Gaas microwave Mosfets, IEEE Trans. Electron. Devices ED-25, 573–579 (1978).

    Google Scholar 

  43. S. Yokoyama, K. Yukitomo, M. Hirose, Y. Osaka, A. Fischer, and K. Ploog, Gaas Mos structures with Al2O3 growth by molecular beam reaction, Surf. Sci. 86, 835–848 (1979).

    ADS  Google Scholar 

  44. M. Hirose, S. Yokoyama, and Y. Osaka, Surface states in Gaas tunnel Mis structures, Phys. Status Solidi A 42, 483–488 (1977).

    ADS  Google Scholar 

  45. M. Hirose, A. Fischer, and K. Ploog, Growth of Al2O3 layer on MBE Gaas, Phys. Status Solidi A, 45, K175–K177 (1978).

    ADS  Google Scholar 

  46. M. Hirose, S. Hirose, and Y. Osaka, Surface states in Gaas tunnel Mis structures, Phys. Status Solidi A, 42, 483–488 (1977).

    ADS  Google Scholar 

  47. S. Yokoyama, K. Yukitomo, M. Hirose, and Y. Osaka, Gaas Mos structures with AL2O3 grown by molecular beam reaction under UV excitation, Thin Solid Films 56, 81–88 (1979).

    ADS  Google Scholar 

  48. K. Kamimura and Y. Sakai, The properties of Gaas-Al2O3 and Inp-Al2O3 interfaces and the fabrication of Mis field effect transistors, Thin Solid Flms 56, 215–223 (1979).

    ADS  Google Scholar 

  49. R. L. Streever, J. T. Breslin, and E. H. Ahlstron, Surface states at the n-Gaas-Sio2 interface from conductance and capacitance measurements, Solid-State Electron. 23, 863–868 (1980).

    ADS  Google Scholar 

  50. N. Suzuki, T. Hariu, and Y. Shibata, Effect of native oxide on the interface property of Gaas Mis structures, Appl. Phys. Lett. 33, 761–762 (1978).

    ADS  Google Scholar 

  51. B. Bayraktaroglu, R. L. Johnson, D. W. Langer, and M. G. Mier, Germanium (oxy)nitride based surface passivation techniques as applied to Gaas and Inp, Physics of Mos Insulators (G. Lucvosky, S. T. Pantelides and F. L. Galeener, eds.), pp. 207–211, Pergamon Press, Oxford (1980).

    Google Scholar 

  52. G. D. Bagratishvili, R. B. Dzhanelidze, N. I. Kurdiani, and O. V. Saksagenskii, Mis structure Gaas-Ge3N4-Al, Phys. Status Solidi A 36, 73–79 (1976).

    ADS  Google Scholar 

  53. K. P. Pande, M. L. Chen, M. Yousuf, and B. Laleric, Interface characteristics of Ge3N4-(n-type)Gaas Mis devices, Solid-State Electron. 24, 1107–1109 (1981).

    ADS  Google Scholar 

  54. G. K. Eaton, R. E. J. King, F. D. Morten, A. T. Partridge, and J. G. Smith, Surface conductance on p-type Insb at 77 K, J. Phys. Chem. Solids 23, 1473–1477 (1962).

    ADS  Google Scholar 

  55. J. L. Davis, Surface states on the (111) surface of indium antimonide, Surf. Sci. 2, 33–39 (1964).

    Google Scholar 

  56. J. F. Dewald, The kinetics and mechanism of formation of anode films on single-crystal Insb, J. Electrochem. Soc. 104, 224–251 (1957).

    Google Scholar 

  57. R. K. Mueller and R. L. Jacobson, Photo-controlled surface conductance in anodized Insb, J. Appl. Phys. 35, 1524–1529 (1964).

    ADS  Google Scholar 

  58. L. L. Chang and W. E. Howard, Surface inversion and accumulation of anodized Insb, Appl. Phys. Lett. 7, 210–212 (1965).

    Google Scholar 

  59. H. Huff, S. Kawaji, and H. C. Gates, Field-effect measurements on the A and B (111) surfaces of indium antimonide, Surf. Sci. 5, 399–409 (1966).

    Google Scholar 

  60. L. L. Chang, Orientation dependence of surface charge on anodized Insb, Solid-State Electron. 10, 69–70 (1967).

    ADS  Google Scholar 

  61. D. L. Lile and J. C. Anderson, Electrical surface properties of polycrystalline layers of PbTe and Insb, Brit. J. Appl. Phys. (J. Phys. D) 2, 839–853 (1969).

    ADS  Google Scholar 

  62. K. F. Komatsubara, H. Kamioka, and Y. Katayama, Electrical conductivity in an n-type surface inversion layer of Insb at low temperature, J. Appl. Phys. 40, 2940–2944 (1969).

    ADS  Google Scholar 

  63. K. F. Komatsubara, Y. Katayama, N. Kotera, and T. Kobayashi, Transport properties of electrons in inverted Insb surface, J. Vac. Sci. Technol. 6, 572–575 (1969).

    ADS  Google Scholar 

  64. R. Y. Hung and E. T. Yon, Surface study of anodized indium antimonide, J. Appl. Phys. 41, 2185–2189 (1970).

    ADS  Google Scholar 

  65. M. L. Korwin-Pawlowski and E. L. Heasell, Characteristics of Mos capacitors formed on p-type Insb, Phys. Status Soldi A 24, 649–652 (1974).

    ADS  Google Scholar 

  66. H. L. Henneke, Comment on “Polarity effects in Insb-alloyed p-n junctions,” J. Appl. Phys. 36, 2967–2968 (1965).

    ADS  Google Scholar 

  67. J. C. Kim, Interface properties of Insb Mis structures, IEEE Trans. Parts, Hybrids, Packaging PHP-10, 200–207 (1974).

    Google Scholar 

  68. A. Etchels and C. W. Fischer, Interface-state density and oxide charge measurements on the metal-anodix oxide-Insb system, J. Appl. Phys. 47, 4605–4610 (1976).

    ADS  Google Scholar 

  69. H. Fufiyasu, M. Suzuki, K. Nakao, S. Itho, and O. Ohtsuki, Properties of metal- borosilicate glass-Insb oxide-p-type Insb structures, Japan. J. Appl. Phys. 16, 1473–1474 (1977).

    ADS  Google Scholar 

  70. T. Nakagawa and H. Fujisada, Method of reporting by hysteresis effects from Mis capacitance measurements, Appl. Phys. Lett. 31, 348–350 (1977).

    Google Scholar 

  71. A. Heime and H. Pagnia, Influence of the semiconductor-oxide interlayer on the ac-behavior of Insb Mos-capacitors, Appl. Phys. 15, 79–84 (1977).

    ADS  Google Scholar 

  72. J. D. Langan and C. R. Viswanthan, Characterization of improved Insb interfaces, J. Vac. Sci. Technol. 16, 1474–1477 (1974).

    ADS  Google Scholar 

  73. M. Yamaguchi and K. Ando, Thermal oxidation of Inp and properties of oxide film, J. Appl. Phys. 51, 5007–5012 (1980).

    ADS  Google Scholar 

  74. L. G. Meiners, Electrical properties of Sio2 and Si3N4 dielectric layers on Inp, J. Vac. Sci. Technol. 19, 373–379 (1981).

    ADS  Google Scholar 

  75. M. Yamaguchi, Thermal oxidation of Inp in phosphorus pentoxide vapor, J. Appl. Phys. 52, 4885–4887 (1981).

    ADS  Google Scholar 

  76. C. W. Wilmsen, The Mos Inp interface, CRC Crit. Rev. Solid-State Sci. 5, 313–317 (1975).

    Google Scholar 

  77. D. L. Lile and D. A. Collins, An Inp Mis diode, Appl. Phys. Lett. 28, 554–556 (1976).

    Google Scholar 

  78. K. P. Pande and G. G. Roberts, Interface characteristics of Inp Mos capacitors, J Vac. Sci. Technol. 16, 1470–1473 (1979).

    ADS  Google Scholar 

  79. T. Ota and Y. Horikoshi, Inp Mis diodes prepared by anodic oxidation, Japan. J. Appl. Phys. 18, 989–990 (1979).

    ADS  Google Scholar 

  80. S. Hannah and B. Livingstone, Composite Al2O3 and native oxide on Gaas and Inp incorporating enhanced group III oxides for surface passivation, Inst. Phys. Conf. Ser. No. 50, 271–279 (1980).

    Google Scholar 

  81. G. G. Roberts, K. P. Pande, and W. A. Barlow, Inp-Langmuir film M.I.S. structures, Electron. Lett. 13, 581–583 (1977).

    Google Scholar 

  82. R. W. Sykes, G. G. Roberts, T. Fok and D. T. Clark, p-type Inp/Langmuir film M.I.S. diodes, IEEE Proc. Part I, 137–139 (1980).

    Google Scholar 

  83. G. G. Roberts, K. P. Pande, and W. A. Barlow, Inp-Langmuir-film M.I.S.F.E.T., Solid-State Electron. Devices 2, 169–175 (1978).

    Google Scholar 

  84. L. Messick, Inp/Sio2 MIOS structure, J. Appl. Phys. 47, 4949–4951 (1976).

    ADS  Google Scholar 

  85. D. Fritzsche, Inp-Sio2, M.I.S. structure with reduced interface state density near conduction band, Electron. Lett. 14, 51–52 (1978).

    Google Scholar 

  86. J. Stannard, Carrier generation and trapping in n-Inp/Sio2 capacitors, J. Vac. Sci. Technol. 16, 1462–1465 (1979).

    ADS  Google Scholar 

  87. L. G. Meiners, Capacitance-voltage and surface photovoltage measurements of pyrolytically-deposited Sio2 and Inp, Thin Solid Films 56, 201–207 (1979).

    ADS  Google Scholar 

  88. D. L. Lile, D. A. Collins, L. G. Meiners, and L. J. Messick, N-channel inversion-mode Inp MisFET, Electron. Lett. 14, 657–659 (1978).

    Google Scholar 

  89. L. G. Meiners, D. L. Lile, and D. A. Collins, Inversion layers on Inp, J. Vac. Sci. Technol. 16, 1458–1461 (1979).

    ADS  Google Scholar 

  90. D. Fritzsche, Interface studies on Inp inversion Fets with Sio2 gate insulation, Inst. Phys. Conf. Ser. No. 50, 258–265 (1980).

    Google Scholar 

  91. K. Von. Klitzing, T. Englert, and D. Fritsche, Transport measurements on Inp inversion Mos transistors, J. Appl. Phys. 51, 5893–5897 (1980).

    ADS  Google Scholar 

  92. L. G. Meiners, D. L. Lile, and D. A. Collins, Microwave gain from an n-channel enhancement-mode Inp M.I.S.F.E.T., Electron Lett. 15, 578 (1979).

    ADS  Google Scholar 

  93. L. G. Meiners and H. H. Wieder, in: Semi-Insulating III-V Materials ( G. J. Ress, ed.), pp. 198–205, Shiva Press, Orpington (1980).

    Google Scholar 

  94. D. C. Cameron, L. D. Irving, G. R. Jones, and J. Woodward, MisFET and Mis diode behavior of some insulator-Inp systems, presented at INFOS 1981, Erlangen, West Germany.

    Google Scholar 

  95. T. Kawakami and M. Okamura, Inp/Al2O3 n-channel inversion-mode M.I.S.F.E.T. s using sulfur-diffused source and drain, Electron Lett. 15, 502–504 (1979).

    ADS  Google Scholar 

  96. M. Okamura and T. Kobayashi, Reduction of interface states and fabrication of ¿-channel inversion-type Inp-MisFET, Japan. J. Appl. Phys. 19, L599–L602 (1980).

    ADS  Google Scholar 

  97. M. Okamura and T. Kobayashi, Improved interface in inversion-type Inp-MisFET by vapor etching technique, Japan. J. Appl. Phys. 19, 2151–2156 (1980).

    ADS  Google Scholar 

  98. M. Okamura and T. Kobayashi, Slow current-drift mechanism in n-channel inversion type Inp-MisFET, Japan, J. Appl. Phys. 19, 2143–2150 (1980).

    Google Scholar 

  99. T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda, and Y. Hirota, Effect of pyrolytic Al2O3 deposition temperature on inversion-mode Inp metal-insulator-semiconductor field-effect transistor, J. Appl. Phys. 52, 6434–6436 (1981).

    ADS  Google Scholar 

  100. K. P. Pande and S. Pourdavoud, Ge3N4-Inp Mis structures, IEEE Electron. Devices Lett. EDL-2, 182–184 (1981).

    Google Scholar 

  101. S. N. Al-Refaie and J. E. Carroll, Indium phosphide oxide on Inp for MosFET applications, IEE Proc. 128, 207–210 (1981).

    Google Scholar 

  102. M. Yamaguchi, Thermal nitridation on Inp, Japan. J. Appl. Phys. 19, L401–L404 (1980).

    ADS  Google Scholar 

  103. Y. Hirota, M. Okamura, and T. Kobayashi, The effects of annealing metal-insulator-semiconductor diodes employing a thermal nitride-Inp interface, J. Appl. Phys. 53, 536–640 (1982).

    ADS  Google Scholar 

  104. S. Kawaji and Y. Kawaguchi, Galvanomagnetic properties of surface layers in indium arsenide, Proceedings of the Conference on Physics of Semiconductors, Kyoto, 1966, J. Phys. Soc. Japan Suppl. 21, 336–340 (1966).

    Google Scholar 

  105. H. E. Kunig, Analysis of an In As thin film transistor, Solid-State Electron. 110, 335–342 (1968).

    ADS  Google Scholar 

  106. R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, Capacitance-voltage measurements on n-type InAs Mos diodes, Solid-State Electron. 14, 115–124 (1971).

    ADS  Google Scholar 

  107. H. Terao, T. Ito, and Y. Saki, Interface properties of Inas-Mis structures and their application to Fet, Elec. Eng. Japan 94, 127–132 (1974).

    Google Scholar 

  108. C. W. Wilmsen, L. G. Meiners, and D. A. Collins, Single- and double-layer insulator metal-oxide semiconductor capacitors on indium arsenide, Thin Solid Films 46, 331–337 (1977).

    ADS  Google Scholar 

  109. D. A. Baglee, D. K. Ferry, C. W. Wilmsen, and H. H. Wieder, Inversion layer transport and properties on Inas, J. Vac. Sci. Technol. 17, 1032–1036 (1980).

    ADS  Google Scholar 

  110. S. M. Spitzer, B. Schwartz, and M. Kuhn, Electrical properties of a native oxide on gallium phosphide, J. Electrochem. Soc. 120, 669–672 (1973).

    Google Scholar 

  111. T. Ikoma and H. Yokomizo, C-V characteristics of GaP Mos diode with anodic oxide film, IEEE Trans. Electron. Devices ED-23, 521–523 (1976).

    Google Scholar 

  112. D. H. Phillips, W. W. Grannermann, L. E. Coerver, and G. J. Kuhlmann, Fabrication of GaasP Mis capacitors using a thermal-oxidation dielectric-growth process, J. Electrochem. Soc. 120, 1087–1091 (1973).

    Google Scholar 

  113. L. Forbes, J. R. Yeargan, D. L. Keune, and M. G. Craford, Characteristics and potential applications of Gaasj_xPx Mis structures, Solid-State Electron. 17, 25–29 (1974).

    ADS  Google Scholar 

  114. R. K. Ahrenkiel, F. Moser, S. L. Lyu, and T. J. Coburn, Electronic properties of anodic oxides grown on Gaas0 6P0 4, Thin Solid Films 56, 117–128 (1979).

    ADS  Google Scholar 

  115. I. Tamm, Physik. Z. Sowjetunion 1, 733 (1933).

    Google Scholar 

  116. L. D. Langan, Study and Characterization of Semiconductor Surfaces and Interfaces, Ph.D. Thesis, University of California, Santa Barbara (1979).

    Google Scholar 

  117. R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, Capacitance voltage measurements on N-type Inas Mos diodes, Solid-State Electron. 14, 115 (1971).

    ADS  Google Scholar 

  118. R. Zeigler and E. Klausmann, Static technique for precise measurements of surface potential and interface state density in Mos structures, Appl. Phys. Lett. 26, 400 (1975).

    Google Scholar 

  119. N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, Characteristic defects at the Si-Sio2 interface, Physics of Mos Insulators (G. Lucovsky, S. T. Pantelides, and F. L. Galeenev, eds.), p. 311, Pergamon Press, New York (1980).

    Google Scholar 

  120. C. W. Wilmsen, J. F. Wager, and J. Stannard, Chemical vapour deposited Sio2-Inp interface, Inst. Phys. Conf. Ser. No. 50, 251 (1980).

    Google Scholar 

  121. A. Goetzberger, E. Klausmann, and M.J. Schulz, Interface states on semiconductor/insulator interfaces, CRC Crit. Rev. Solid-State Sci. 6, 1 (1976).

    Google Scholar 

  122. K. Strater, Controlled oxidation of silane, RCA Rev. 29, 618–629 (1968).

    Google Scholar 

  123. N. Goldsmith and W. Kern, The deposition of vitreous silicon dioxide films from silane, RCA Rev. 28, 153–165 (1967).

    Google Scholar 

  124. R. S. Rosier, Low pressure CUD production processes for poly, nitride and oxide, Solid-State Technol. 20, 63–70 (1977).

    Google Scholar 

  125. R. C. G. Swann and A. E. Pyne, The preparation and properties of silica films deposited from silane and carbon dioxide, J. Electrochem. Soc. 116, 1014–1017 (1969).

    Google Scholar 

  126. H. F. Sterling and R. C. G. Swann, Chemical vapor deposition promoted by rf discharge, Solid-State Electron., 8, 653–654 (1965).

    ADS  Google Scholar 

  127. K. Saminadayer and J. C. Pfister, Surface state generation on Mos capacitors irradiated with UV light and electrons, Phys. Status Solidi A 36, 679–686 (1976).

    ADS  Google Scholar 

  128. R. J. Powell, Vacuum-ultraviolet-induced space charge in AL2O3 films, Appl. Phys. Lett. 28, 643–645 (1976).

    Google Scholar 

  129. G. W. Hughes, R. J. Powell, and M. H. Woods, Oxide thickness dependence of high energy electron, VUV and corona-induced charge in Mos capacitors, Appl. Phys. Lett. 29, 377–379 (1976).

    Google Scholar 

  130. R. J. Powell, Hole photocurrents and electron tunnel injection induced by trapped holes in Sio2 films, J. Appl. Phys. 46, 4557–4563 (1975).

    ADS  Google Scholar 

  131. N. M. Johnson, W. C. Johnson, and M. A. Lampert, Electron trapping in aluminum implanted silicon dioxide films on silicon, J. Appl. Phys. 46, 1216–1222 (1975).

    ADS  Google Scholar 

  132. J. M. Aitken, D. R. Young, and K. Pan, Electron trapping in electron beam irradiated Sio2, J. Appl. Phys. 49, 3386–3391 (1978).

    ADS  Google Scholar 

  133. T. H. Ning, Electron trapping in Sio2 due to electron beam deposition of aluminum, J. Appl. Phys. 49, 4077–4082 (1978).

    ADS  Google Scholar 

  134. J. R. Szedon and J. E. Sandor, The effect of low energy electron irradiation of metal oxide semiconductor structures, Appl. Phys. Lett. 6, 181–182 (1965).

    Google Scholar 

  135. A. J. Spetn and F. F. Fang, Effect of low-energy electron irradiation on Si-insulated gate Fets, Appl. Phys. Lett. 7, 145–146 (1965).

    ADS  Google Scholar 

  136. J. M. Fanet and R. Poirier, Charge storage in Sio2 under low energy electron bombardment, Appl. Phys. Lett. 25, 183–185 (1974).

    ADS  Google Scholar 

  137. L. M. Ephrath and D. J. DiMaria, Review of RIE induced radiation damage in silicon dioxide, Solid-State Technol. 24, 182–188 (1981).

    Google Scholar 

  138. L. G. Meiners, Indirect plasma deposition of silicon dioxide, J. Vac. Sci. Technol. 21, 655–658 (1982).

    ADS  Google Scholar 

  139. F. Kaufman and J. R. Kelso, Catalytic effects in the dissociation of oxygen in microwave discharges, J. Chem. Phys. 32, 301–302 (1960).

    ADS  Google Scholar 

  140. W. L. Fite, in: Chemical Reactions in Electrical Discharges ( B. D. Blaustein, ed.), p. 9, American Chemical Society, Washington, D.C. (1969).

    Google Scholar 

  141. A. T. Bell, Techniques and Applications of Plasma Chemistry (J. R. Hollahan and A. T. Bell, eds.), p. 28, Wiley, New York (1974).

    Google Scholar 

  142. A. T. Bell and K. Kwong, Dissociation of oxygen in a radiofrequency electrical discharge, J. Am. Inst. Chem. Engrs. 18, 990–998 (1972).

    Google Scholar 

  143. H. J. Emeleus and K. Stewart, The oxidation of the silicon hydrides, Part I, J. Chem. Soc. 1935, 1182–1189.

    Google Scholar 

  144. J. W. Peters, Low temperature photo-Cvd oxide processing for semiconductor device applications, International Electron Devices Meeting, December 7–9, Washington, D.C., 1981.

    Google Scholar 

  145. L. A. Kasprzak nd A. K. Gaind, Near-ideal Si-Sio2 interfaces, IBM J. Res. Develop. 24, 348–352 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Meiners, L.G. (1985). Electrical Properties of Insulator-Semiconductor Interfaces on III-V Compounds. In: Wilmsen, C.W. (eds) Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4835-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4835-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4837-5

  • Online ISBN: 978-1-4684-4835-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics