Electrical Properties of Insulator-Semiconductor Interfaces on III-V Compounds

  • L. G. Meiners


An enormous amount of theoretical and experimental work has been published on metal-insulator-semiconductor (MIS) structures which employ thermally oxidized silicon. The technology of these devices has reached a level of perfection which permits the formation of insulator- semiconductor interfaces in which essentially no extraneous charge-trapping mechanisms are present. The understanding of such structures has reached a level which permits the design and large-scale technological applications of MIS transistors and MIS integrated circuits. Although several other semiconductors appear to be superior to silicon for certain MIS applications, such as microwave logic and signal processing, the understanding of the surface properties of the alternative semiconductors is in a primitive state. The dielectrics that have been tried on such semiconductors always have exhibited larger amounts of charge trapping at the interface and greater frequency dispersion of the electrical properties of the insulator than those attainable on thermally oxidized silicon. In fact, the surface properties are, in many cases, so poor that comparison between experiment and theoretical models developed for silicon can be very difficult and often confusing.


Gate Voltage Versus Measurement Inversion Layer Versus Data Gate Bias 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. Hofstein and G. Warfield, Solid-State Electron 8, 321 (1965).ADSGoogle Scholar
  2. 2.
    F. P. Heiman, IEEE Trans. Electron. Devices ED-14, 781 (1967).Google Scholar
  3. 3.
    A. Goetzberger, E. Klausmann, and M. Schulz, CRC Crit. Rev. Solid-State Sci. 6, 1 (1976).Google Scholar
  4. 4.
    S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York, 1969, p. 436.Google Scholar
  5. 5.
    S. Schottky, Naturwissenschaften, 26, 843 (1938).ADSGoogle Scholar
  6. 6.
    L. M. Terman, Solid-State Electron. 5, 285 (1962).ADSGoogle Scholar
  7. 7.
    C. N. Berglund, IEEE Trans. Electron. Devices ED-13, 701 (1966).Google Scholar
  8. 8.
    C. Hilsum, Prog. Semicond. 9, 137 (1965).Google Scholar
  9. 9.
    J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Englewood Cliffs, NJ (1971), p. 53.Google Scholar
  10. 10.
    L. G. Meiners, Electrical properties of the gallium arsenide-insulator interface, J. Vac. Sci. Technol. 15, 1402–1407 (1978).ADSGoogle Scholar
  11. 11.
    L. G. Meiners, Surface potential of anodized p–Gaas Mos capacitors, Appl. Phys. Lett. 33, 747–748 (1978).ADSGoogle Scholar
  12. 12.
    E. Kohn and H. L. Hartnagel, On the interpretation of electrical measurements on the Gaas-Mos system, Solid-State Electron. 21, 409–416 (1978).ADSGoogle Scholar
  13. 13.
    D. Gerlich, Beat frequency bridge for large signal field effect, J. Appl. Phys. 33, 1815–1816 (1962).ADSGoogle Scholar
  14. 14.
    M. H. Pilkuhn, Study of gallium arsenide surfaces, J. Phys. Chem. Solids 25, 141–146 (1964).ADSGoogle Scholar
  15. 15.
    I. Flinn and M. Briggs, Surface measurements on gallium arsenide, Surf. Sci. 2, 136–145 (1964).Google Scholar
  16. 16.
    D. N. Butcher and B. J. Sealy, Electrical properties of thermal oxides on Gaas, Electron. Lett. 13, 558–559 (1977).Google Scholar
  17. 17.
    H. Hasegawa, K. E. Forward, and H. L. Hartnagel, New anodic native oxide of Gaas with improved dielectric and interface properties, Appl. Phys. Lett. 12, 567–569 (1975).ADSGoogle Scholar
  18. 18.
    G. Weimann and W. Schlapp, Anodic oxidation of gallium arsenide, Thin Solid Films 38, L5–L7 (1976).ADSGoogle Scholar
  19. 19.
    G. Weimann, Oxide and interface properties of anodic oxide Mos structures on III-V compound semiconductors, Thin Solid Films 56, 173–182 (1979).ADSGoogle Scholar
  20. 20.
    S. Varadarajan, M. A. Littlejohn, and J. R. Hauser, Inversion and accumulation layer formation at elevated temperatures in n-type Gaas-anodic oxide Mis devices, Thin Solid Films 56, 235–242 (1979).ADSGoogle Scholar
  21. 21.
    T. Sawada and H. Hasegawa, Interface state band between Gaas and its anodic native oxide, Thin Solid Films 56, 183–200 (1979).ADSGoogle Scholar
  22. 22.
    G. Sixt, K. H. Ziegler, and W. R. Fahrner, Properties of anodic oxide films on n-type Gaas, Gaas0.6P0.4 and GaP, Thin Solid Films 56, 107–116 (1979).ADSGoogle Scholar
  23. 23.
    C. R. Zeisse, L. J. Messick, and D. L. Lile, Electrical properties of anodic and pyrolytic dielectrics on gallium arsenide, J. Vac. Sci. Technol. 14, 957–960 (1977).ADSGoogle Scholar
  24. 24.
    A. Shimano, A. Moritani, and J. Nakai, Gaas-Mos capacitor with native oxide film anodized in nonaqueous elecltrolyte, Solid-State Electron. 21, 1149–1152 (1978).ADSGoogle Scholar
  25. 25.
    B. M. Arora and A. M. Narsale, Electrical instabilities of Al-anodic oxide-n-Gaas Mos structures and the effect of annealing, Thin Solid Films 56, 153–161 (1979).ADSGoogle Scholar
  26. 26.
    R. P. F. Chang and A. K. Sinha, Plasma oxidation of Gaas, Appl. Phys. Lett. 29, 56–58 (1976).ADSGoogle Scholar
  27. 27.
    L. A. Chesler and G. Y. Robinson, DC plasma anodization of Gaas, Appl. Phys. Lett. 32, 60–62 (1978).Google Scholar
  28. 28.
    L. A. Chesler and G. Y. Robinson, Plasma anodization of Gaas in a dc discharge, J. Vac. Sci. Technol. 15, 1525–1529 (1978).ADSGoogle Scholar
  29. 29.
    K. Yamasaki and T. Sugano, Determination of the interface states in Gaas Mos diodes by deep-level transient spectroscopy, Appl. Phys. Lett. 35, 932–934 (1979).ADSGoogle Scholar
  30. 30.
    Y. Hirayama, F. Koshiga, and T. Sugano, Capacitance-voltage characteristics of AI- plasma anodic Al2O3-Gaas diodes, J. Appl. Phys. 52, 4697–4699 (1981).ADSGoogle Scholar
  31. 31.
    N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, Low-temperature plasma oxida-tion of Gaas, Appl Phys. Lett. 32, 58–60 (1978).ADSGoogle Scholar
  32. 32.
    R. P. H. Chang and J. J. Coleman, A new method of fabricating gallium arsenide Mos devices, Appl. Phys. Lett. 32, 332–333 (1978).Google Scholar
  33. 33.
    F. Koshiga and T. Sugano, The anodic oxidation of Gaas in an oxygen plasma generated by a D.C. electrical discharge, Thin Solid Films 56, 39–49 (1979).ADSGoogle Scholar
  34. 34.
    R. Hall and J. P. White, Surface capacity of oxide coated semiconductors, Solid-State Electron 8, 211–226 (1965).ADSGoogle Scholar
  35. 35.
    H. Becke, R. Hall, and J. White, Gallium arsenide Mos transistors, Solid-State Electron. 8, 813–823 (1965).ADSGoogle Scholar
  36. 36.
    H. W. Becke and J. P. White, Gallium arsenide Fets outperform conventional silicon Mos devices, Electronics 40 (12), 82–89 (1967).Google Scholar
  37. 37.
    W. Kern and J. P. White, Interface properties of chemically vapor deposited silica films on gallium arsenide, RCA Rev. 31, 771–783 (1970).Google Scholar
  38. 38.
    J. E. Foster and J. M. Swartz, Electrical characteristics of the silicon nitride-gallium aresnide interface, J. Electrochem. Soc. 117, 1410–1417 (1970).Google Scholar
  39. 39.
    H. Klose, Y. E. Maronchuk, and O. V. Senoshenko, On the photo-capacitance of the Mis structure Al-Si3N4-n-Gaas, Phys. Status Solidi A 21, 659–664 (1974).ADSGoogle Scholar
  40. 40.
    T. Ito and Y. Sakai, The Gaas inversion-type Mis transistors, Solid-State Electron. 17, 751–759 (1974).ADSGoogle Scholar
  41. 41.
    W. Y. Lum and H. H. Wieder, Thermally converted surface layers in semi-insulating Gaas, Appl. Phys. Lett. 31, 213–215 (1977).ADSGoogle Scholar
  42. 42.
    T. Mimura, K. Odani, N. Yokoyama, Y. Nakayama, and M. Fukuta, Gaas microwave Mosfets, IEEE Trans. Electron. Devices ED-25, 573–579 (1978).Google Scholar
  43. 43.
    S. Yokoyama, K. Yukitomo, M. Hirose, Y. Osaka, A. Fischer, and K. Ploog, Gaas Mos structures with Al2O3 growth by molecular beam reaction, Surf. Sci. 86, 835–848 (1979).ADSGoogle Scholar
  44. 44.
    M. Hirose, S. Yokoyama, and Y. Osaka, Surface states in Gaas tunnel Mis structures, Phys. Status Solidi A 42, 483–488 (1977).ADSGoogle Scholar
  45. 45.
    M. Hirose, A. Fischer, and K. Ploog, Growth of Al2O3 layer on MBE Gaas, Phys. Status Solidi A, 45, K175–K177 (1978).ADSGoogle Scholar
  46. 46.
    M. Hirose, S. Hirose, and Y. Osaka, Surface states in Gaas tunnel Mis structures, Phys. Status Solidi A, 42, 483–488 (1977).ADSGoogle Scholar
  47. 47.
    S. Yokoyama, K. Yukitomo, M. Hirose, and Y. Osaka, Gaas Mos structures with AL2O3 grown by molecular beam reaction under UV excitation, Thin Solid Films 56, 81–88 (1979).ADSGoogle Scholar
  48. 48.
    K. Kamimura and Y. Sakai, The properties of Gaas-Al2O3 and Inp-Al2O3 interfaces and the fabrication of Mis field effect transistors, Thin Solid Flms 56, 215–223 (1979).ADSGoogle Scholar
  49. 49.
    R. L. Streever, J. T. Breslin, and E. H. Ahlstron, Surface states at the n-Gaas-Sio2 interface from conductance and capacitance measurements, Solid-State Electron. 23, 863–868 (1980).ADSGoogle Scholar
  50. 50.
    N. Suzuki, T. Hariu, and Y. Shibata, Effect of native oxide on the interface property of Gaas Mis structures, Appl. Phys. Lett. 33, 761–762 (1978).ADSGoogle Scholar
  51. 51.
    B. Bayraktaroglu, R. L. Johnson, D. W. Langer, and M. G. Mier, Germanium (oxy)nitride based surface passivation techniques as applied to Gaas and Inp, Physics of Mos Insulators (G. Lucvosky, S. T. Pantelides and F. L. Galeener, eds.), pp. 207–211, Pergamon Press, Oxford (1980).Google Scholar
  52. 52.
    G. D. Bagratishvili, R. B. Dzhanelidze, N. I. Kurdiani, and O. V. Saksagenskii, Mis structure Gaas-Ge3N4-Al, Phys. Status Solidi A 36, 73–79 (1976).ADSGoogle Scholar
  53. 53.
    K. P. Pande, M. L. Chen, M. Yousuf, and B. Laleric, Interface characteristics of Ge3N4-(n-type)Gaas Mis devices, Solid-State Electron. 24, 1107–1109 (1981).ADSGoogle Scholar
  54. 54.
    G. K. Eaton, R. E. J. King, F. D. Morten, A. T. Partridge, and J. G. Smith, Surface conductance on p-type Insb at 77 K, J. Phys. Chem. Solids 23, 1473–1477 (1962).ADSGoogle Scholar
  55. 55.
    J. L. Davis, Surface states on the (111) surface of indium antimonide, Surf. Sci. 2, 33–39 (1964).Google Scholar
  56. 56.
    J. F. Dewald, The kinetics and mechanism of formation of anode films on single-crystal Insb, J. Electrochem. Soc. 104, 224–251 (1957).Google Scholar
  57. 57.
    R. K. Mueller and R. L. Jacobson, Photo-controlled surface conductance in anodized Insb, J. Appl. Phys. 35, 1524–1529 (1964).ADSGoogle Scholar
  58. 58.
    L. L. Chang and W. E. Howard, Surface inversion and accumulation of anodized Insb, Appl. Phys. Lett. 7, 210–212 (1965).Google Scholar
  59. 59.
    H. Huff, S. Kawaji, and H. C. Gates, Field-effect measurements on the A and B (111) surfaces of indium antimonide, Surf. Sci. 5, 399–409 (1966).Google Scholar
  60. 60.
    L. L. Chang, Orientation dependence of surface charge on anodized Insb, Solid-State Electron. 10, 69–70 (1967).ADSGoogle Scholar
  61. 61.
    D. L. Lile and J. C. Anderson, Electrical surface properties of polycrystalline layers of PbTe and Insb, Brit. J. Appl. Phys. (J. Phys. D) 2, 839–853 (1969).ADSGoogle Scholar
  62. 62.
    K. F. Komatsubara, H. Kamioka, and Y. Katayama, Electrical conductivity in an n-type surface inversion layer of Insb at low temperature, J. Appl. Phys. 40, 2940–2944 (1969).ADSGoogle Scholar
  63. 63.
    K. F. Komatsubara, Y. Katayama, N. Kotera, and T. Kobayashi, Transport properties of electrons in inverted Insb surface, J. Vac. Sci. Technol. 6, 572–575 (1969).ADSGoogle Scholar
  64. 64.
    R. Y. Hung and E. T. Yon, Surface study of anodized indium antimonide, J. Appl. Phys. 41, 2185–2189 (1970).ADSGoogle Scholar
  65. 65.
    M. L. Korwin-Pawlowski and E. L. Heasell, Characteristics of Mos capacitors formed on p-type Insb, Phys. Status Soldi A 24, 649–652 (1974).ADSGoogle Scholar
  66. 66.
    H. L. Henneke, Comment on “Polarity effects in Insb-alloyed p-n junctions,” J. Appl. Phys. 36, 2967–2968 (1965).ADSGoogle Scholar
  67. 67.
    J. C. Kim, Interface properties of Insb Mis structures, IEEE Trans. Parts, Hybrids, Packaging PHP-10, 200–207 (1974).Google Scholar
  68. 68.
    A. Etchels and C. W. Fischer, Interface-state density and oxide charge measurements on the metal-anodix oxide-Insb system, J. Appl. Phys. 47, 4605–4610 (1976).ADSGoogle Scholar
  69. 69.
    H. Fufiyasu, M. Suzuki, K. Nakao, S. Itho, and O. Ohtsuki, Properties of metal- borosilicate glass-Insb oxide-p-type Insb structures, Japan. J. Appl. Phys. 16, 1473–1474 (1977).ADSGoogle Scholar
  70. 70.
    T. Nakagawa and H. Fujisada, Method of reporting by hysteresis effects from Mis capacitance measurements, Appl. Phys. Lett. 31, 348–350 (1977).Google Scholar
  71. 71.
    A. Heime and H. Pagnia, Influence of the semiconductor-oxide interlayer on the ac-behavior of Insb Mos-capacitors, Appl. Phys. 15, 79–84 (1977).ADSGoogle Scholar
  72. 72.
    J. D. Langan and C. R. Viswanthan, Characterization of improved Insb interfaces, J. Vac. Sci. Technol. 16, 1474–1477 (1974).ADSGoogle Scholar
  73. 73.
    M. Yamaguchi and K. Ando, Thermal oxidation of Inp and properties of oxide film, J. Appl. Phys. 51, 5007–5012 (1980).ADSGoogle Scholar
  74. 74.
    L. G. Meiners, Electrical properties of Sio2 and Si3N4 dielectric layers on Inp, J. Vac. Sci. Technol. 19, 373–379 (1981).ADSGoogle Scholar
  75. 75.
    M. Yamaguchi, Thermal oxidation of Inp in phosphorus pentoxide vapor, J. Appl. Phys. 52, 4885–4887 (1981).ADSGoogle Scholar
  76. 76.
    C. W. Wilmsen, The Mos Inp interface, CRC Crit. Rev. Solid-State Sci. 5, 313–317 (1975).Google Scholar
  77. 77.
    D. L. Lile and D. A. Collins, An Inp Mis diode, Appl. Phys. Lett. 28, 554–556 (1976).Google Scholar
  78. 78.
    K. P. Pande and G. G. Roberts, Interface characteristics of Inp Mos capacitors, J Vac. Sci. Technol. 16, 1470–1473 (1979).ADSGoogle Scholar
  79. 79.
    T. Ota and Y. Horikoshi, Inp Mis diodes prepared by anodic oxidation, Japan. J. Appl. Phys. 18, 989–990 (1979).ADSGoogle Scholar
  80. 80.
    S. Hannah and B. Livingstone, Composite Al2O3 and native oxide on Gaas and Inp incorporating enhanced group III oxides for surface passivation, Inst. Phys. Conf. Ser. No. 50, 271–279 (1980).Google Scholar
  81. 81.
    G. G. Roberts, K. P. Pande, and W. A. Barlow, Inp-Langmuir film M.I.S. structures, Electron. Lett. 13, 581–583 (1977).Google Scholar
  82. 82.
    R. W. Sykes, G. G. Roberts, T. Fok and D. T. Clark, p-type Inp/Langmuir film M.I.S. diodes, IEEE Proc. Part I, 137–139 (1980).Google Scholar
  83. 83.
    G. G. Roberts, K. P. Pande, and W. A. Barlow, Inp-Langmuir-film M.I.S.F.E.T., Solid-State Electron. Devices 2, 169–175 (1978).Google Scholar
  84. 84.
    L. Messick, Inp/Sio2 MIOS structure, J. Appl. Phys. 47, 4949–4951 (1976).ADSGoogle Scholar
  85. 85.
    D. Fritzsche, Inp-Sio2, M.I.S. structure with reduced interface state density near conduction band, Electron. Lett. 14, 51–52 (1978).Google Scholar
  86. 86.
    J. Stannard, Carrier generation and trapping in n-Inp/Sio2 capacitors, J. Vac. Sci. Technol. 16, 1462–1465 (1979).ADSGoogle Scholar
  87. 87.
    L. G. Meiners, Capacitance-voltage and surface photovoltage measurements of pyrolytically-deposited Sio2 and Inp, Thin Solid Films 56, 201–207 (1979).ADSGoogle Scholar
  88. 88.
    D. L. Lile, D. A. Collins, L. G. Meiners, and L. J. Messick, N-channel inversion-mode Inp MisFET, Electron. Lett. 14, 657–659 (1978).Google Scholar
  89. 89.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Inversion layers on Inp, J. Vac. Sci. Technol. 16, 1458–1461 (1979).ADSGoogle Scholar
  90. 90.
    D. Fritzsche, Interface studies on Inp inversion Fets with Sio2 gate insulation, Inst. Phys. Conf. Ser. No. 50, 258–265 (1980).Google Scholar
  91. 91.
    K. Von. Klitzing, T. Englert, and D. Fritsche, Transport measurements on Inp inversion Mos transistors, J. Appl. Phys. 51, 5893–5897 (1980).ADSGoogle Scholar
  92. 92.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Microwave gain from an n-channel enhancement-mode Inp M.I.S.F.E.T., Electron Lett. 15, 578 (1979).ADSGoogle Scholar
  93. 93.
    L. G. Meiners and H. H. Wieder, in: Semi-Insulating III-V Materials ( G. J. Ress, ed.), pp. 198–205, Shiva Press, Orpington (1980).Google Scholar
  94. 94.
    D. C. Cameron, L. D. Irving, G. R. Jones, and J. Woodward, MisFET and Mis diode behavior of some insulator-Inp systems, presented at INFOS 1981, Erlangen, West Germany.Google Scholar
  95. 95.
    T. Kawakami and M. Okamura, Inp/Al2O3 n-channel inversion-mode M.I.S.F.E.T. s using sulfur-diffused source and drain, Electron Lett. 15, 502–504 (1979).ADSGoogle Scholar
  96. 96.
    M. Okamura and T. Kobayashi, Reduction of interface states and fabrication of ¿-channel inversion-type Inp-MisFET, Japan. J. Appl. Phys. 19, L599–L602 (1980).ADSGoogle Scholar
  97. 97.
    M. Okamura and T. Kobayashi, Improved interface in inversion-type Inp-MisFET by vapor etching technique, Japan. J. Appl. Phys. 19, 2151–2156 (1980).ADSGoogle Scholar
  98. 98.
    M. Okamura and T. Kobayashi, Slow current-drift mechanism in n-channel inversion type Inp-MisFET, Japan, J. Appl. Phys. 19, 2143–2150 (1980).Google Scholar
  99. 99.
    T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda, and Y. Hirota, Effect of pyrolytic Al2O3 deposition temperature on inversion-mode Inp metal-insulator-semiconductor field-effect transistor, J. Appl. Phys. 52, 6434–6436 (1981).ADSGoogle Scholar
  100. 100.
    K. P. Pande and S. Pourdavoud, Ge3N4-Inp Mis structures, IEEE Electron. Devices Lett. EDL-2, 182–184 (1981).Google Scholar
  101. 101.
    S. N. Al-Refaie and J. E. Carroll, Indium phosphide oxide on Inp for MosFET applications, IEE Proc. 128, 207–210 (1981).Google Scholar
  102. 102.
    M. Yamaguchi, Thermal nitridation on Inp, Japan. J. Appl. Phys. 19, L401–L404 (1980).ADSGoogle Scholar
  103. 103.
    Y. Hirota, M. Okamura, and T. Kobayashi, The effects of annealing metal-insulator-semiconductor diodes employing a thermal nitride-Inp interface, J. Appl. Phys. 53, 536–640 (1982).ADSGoogle Scholar
  104. 104.
    S. Kawaji and Y. Kawaguchi, Galvanomagnetic properties of surface layers in indium arsenide, Proceedings of the Conference on Physics of Semiconductors, Kyoto, 1966, J. Phys. Soc. Japan Suppl. 21, 336–340 (1966).Google Scholar
  105. 100.
    H. E. Kunig, Analysis of an In As thin film transistor, Solid-State Electron. 110, 335–342 (1968).ADSGoogle Scholar
  106. 106.
    R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, Capacitance-voltage measurements on n-type InAs Mos diodes, Solid-State Electron. 14, 115–124 (1971).ADSGoogle Scholar
  107. 107.
    H. Terao, T. Ito, and Y. Saki, Interface properties of Inas-Mis structures and their application to Fet, Elec. Eng. Japan 94, 127–132 (1974).Google Scholar
  108. 108.
    C. W. Wilmsen, L. G. Meiners, and D. A. Collins, Single- and double-layer insulator metal-oxide semiconductor capacitors on indium arsenide, Thin Solid Films 46, 331–337 (1977).ADSGoogle Scholar
  109. 109.
    D. A. Baglee, D. K. Ferry, C. W. Wilmsen, and H. H. Wieder, Inversion layer transport and properties on Inas, J. Vac. Sci. Technol. 17, 1032–1036 (1980).ADSGoogle Scholar
  110. 110.
    S. M. Spitzer, B. Schwartz, and M. Kuhn, Electrical properties of a native oxide on gallium phosphide, J. Electrochem. Soc. 120, 669–672 (1973).Google Scholar
  111. 111.
    T. Ikoma and H. Yokomizo, C-V characteristics of GaP Mos diode with anodic oxide film, IEEE Trans. Electron. Devices ED-23, 521–523 (1976).Google Scholar
  112. 112.
    D. H. Phillips, W. W. Grannermann, L. E. Coerver, and G. J. Kuhlmann, Fabrication of GaasP Mis capacitors using a thermal-oxidation dielectric-growth process, J. Electrochem. Soc. 120, 1087–1091 (1973).Google Scholar
  113. 113.
    L. Forbes, J. R. Yeargan, D. L. Keune, and M. G. Craford, Characteristics and potential applications of Gaasj_xPx Mis structures, Solid-State Electron. 17, 25–29 (1974).ADSGoogle Scholar
  114. 114.
    R. K. Ahrenkiel, F. Moser, S. L. Lyu, and T. J. Coburn, Electronic properties of anodic oxides grown on Gaas0 6P0 4, Thin Solid Films 56, 117–128 (1979).ADSGoogle Scholar
  115. 115.
    I. Tamm, Physik. Z. Sowjetunion 1, 733 (1933).Google Scholar
  116. 116.
    L. D. Langan, Study and Characterization of Semiconductor Surfaces and Interfaces, Ph.D. Thesis, University of California, Santa Barbara (1979).Google Scholar
  117. 117.
    R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, Capacitance voltage measurements on N-type Inas Mos diodes, Solid-State Electron. 14, 115 (1971).ADSGoogle Scholar
  118. 118.
    R. Zeigler and E. Klausmann, Static technique for precise measurements of surface potential and interface state density in Mos structures, Appl. Phys. Lett. 26, 400 (1975).Google Scholar
  119. 119.
    N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, Characteristic defects at the Si-Sio2 interface, Physics of Mos Insulators (G. Lucovsky, S. T. Pantelides, and F. L. Galeenev, eds.), p. 311, Pergamon Press, New York (1980).Google Scholar
  120. 120.
    C. W. Wilmsen, J. F. Wager, and J. Stannard, Chemical vapour deposited Sio2-Inp interface, Inst. Phys. Conf. Ser. No. 50, 251 (1980).Google Scholar
  121. 121.
    A. Goetzberger, E. Klausmann, and M.J. Schulz, Interface states on semiconductor/insulator interfaces, CRC Crit. Rev. Solid-State Sci. 6, 1 (1976).Google Scholar
  122. 122.
    K. Strater, Controlled oxidation of silane, RCA Rev. 29, 618–629 (1968).Google Scholar
  123. 123.
    N. Goldsmith and W. Kern, The deposition of vitreous silicon dioxide films from silane, RCA Rev. 28, 153–165 (1967).Google Scholar
  124. 124.
    R. S. Rosier, Low pressure CUD production processes for poly, nitride and oxide, Solid-State Technol. 20, 63–70 (1977).Google Scholar
  125. 125.
    R. C. G. Swann and A. E. Pyne, The preparation and properties of silica films deposited from silane and carbon dioxide, J. Electrochem. Soc. 116, 1014–1017 (1969).Google Scholar
  126. 126.
    H. F. Sterling and R. C. G. Swann, Chemical vapor deposition promoted by rf discharge, Solid-State Electron., 8, 653–654 (1965).ADSGoogle Scholar
  127. 127.
    K. Saminadayer and J. C. Pfister, Surface state generation on Mos capacitors irradiated with UV light and electrons, Phys. Status Solidi A 36, 679–686 (1976).ADSGoogle Scholar
  128. 128.
    R. J. Powell, Vacuum-ultraviolet-induced space charge in AL2O3 films, Appl. Phys. Lett. 28, 643–645 (1976).Google Scholar
  129. 129.
    G. W. Hughes, R. J. Powell, and M. H. Woods, Oxide thickness dependence of high energy electron, VUV and corona-induced charge in Mos capacitors, Appl. Phys. Lett. 29, 377–379 (1976).Google Scholar
  130. 130.
    R. J. Powell, Hole photocurrents and electron tunnel injection induced by trapped holes in Sio2 films, J. Appl. Phys. 46, 4557–4563 (1975).ADSGoogle Scholar
  131. 131.
    N. M. Johnson, W. C. Johnson, and M. A. Lampert, Electron trapping in aluminum implanted silicon dioxide films on silicon, J. Appl. Phys. 46, 1216–1222 (1975).ADSGoogle Scholar
  132. 132.
    J. M. Aitken, D. R. Young, and K. Pan, Electron trapping in electron beam irradiated Sio2, J. Appl. Phys. 49, 3386–3391 (1978).ADSGoogle Scholar
  133. 133.
    T. H. Ning, Electron trapping in Sio2 due to electron beam deposition of aluminum, J. Appl. Phys. 49, 4077–4082 (1978).ADSGoogle Scholar
  134. 134.
    J. R. Szedon and J. E. Sandor, The effect of low energy electron irradiation of metal oxide semiconductor structures, Appl. Phys. Lett. 6, 181–182 (1965).Google Scholar
  135. 135.
    A. J. Spetn and F. F. Fang, Effect of low-energy electron irradiation on Si-insulated gate Fets, Appl. Phys. Lett. 7, 145–146 (1965).ADSGoogle Scholar
  136. 136.
    J. M. Fanet and R. Poirier, Charge storage in Sio2 under low energy electron bombardment, Appl. Phys. Lett. 25, 183–185 (1974).ADSGoogle Scholar
  137. 137.
    L. M. Ephrath and D. J. DiMaria, Review of RIE induced radiation damage in silicon dioxide, Solid-State Technol. 24, 182–188 (1981).Google Scholar
  138. 138.
    L. G. Meiners, Indirect plasma deposition of silicon dioxide, J. Vac. Sci. Technol. 21, 655–658 (1982).ADSGoogle Scholar
  139. 139.
    F. Kaufman and J. R. Kelso, Catalytic effects in the dissociation of oxygen in microwave discharges, J. Chem. Phys. 32, 301–302 (1960).ADSGoogle Scholar
  140. 140.
    W. L. Fite, in: Chemical Reactions in Electrical Discharges ( B. D. Blaustein, ed.), p. 9, American Chemical Society, Washington, D.C. (1969).Google Scholar
  141. 141.
    A. T. Bell, Techniques and Applications of Plasma Chemistry (J. R. Hollahan and A. T. Bell, eds.), p. 28, Wiley, New York (1974).Google Scholar
  142. 142.
    A. T. Bell and K. Kwong, Dissociation of oxygen in a radiofrequency electrical discharge, J. Am. Inst. Chem. Engrs. 18, 990–998 (1972).Google Scholar
  143. 143.
    H. J. Emeleus and K. Stewart, The oxidation of the silicon hydrides, Part I, J. Chem. Soc. 1935, 1182–1189.Google Scholar
  144. 144.
    J. W. Peters, Low temperature photo-Cvd oxide processing for semiconductor device applications, International Electron Devices Meeting, December 7–9, Washington, D.C., 1981.Google Scholar
  145. 145.
    L. A. Kasprzak nd A. K. Gaind, Near-ideal Si-Sio2 interfaces, IBM J. Res. Develop. 24, 348–352 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • L. G. Meiners
    • 1
  1. 1.Electrical Engineering and Computer Sciences DepartmentUniversity of California, San DiegoLa JollaUSA

Personalised recommendations