The Deposited Insulator/III-V Semiconductor Interface

  • J. F. Wager
  • C. W. Wilmsen


The development of a MISFET technology using the III-V compounds requires a gate insulator which is highly resistive, mechanically strong, and electronically stable and which produces a low interface state density. Grown oxides on III-V semiconductors have not yet demonstrated these attributes. For example, arsenic and phosphorus oxides rapidly absorb water from the atmosphere and arsenic oxides are thermodynamically unstable in the presence of GaAs, InAs, or InGaAs. The failure of the grown oxides to provide a suitable gate insulator dictates the use of deposited insulators. The use of a deposited insulator is, however, a compromise at best since the uniformity, thickness, and properties of a deposited insulator cannot be controlled as well as with a grown oxide. Also, the heteromorphic nature of the deposited insulator/III-V interface implies the possibility of a nonabrupt interfacial mismatch and its associated trap states. Thus, deposited insulators have inherent bulk and interface problems which require special attention.


Native Oxide GaAs Surface Interface State Density Semiconductor Interface Indium Antimonide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Meiners, Electrical properties of SiO2 and Si3N4 delectric layers on Inp, J. Vac. Sci. Technol. 19, 373–379 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    R. P. H. Chang, C. C. Chang, and S. Darack, Hydrogen plasma etching of semiconductors and their oxides, J. Vac. Sci. Technol. 20, 45–50 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    M. L. Korwin-Pawlowski and E. L. Hesell, Thermal oxide layers on indium antimonide, Phys. Status Solidi (A) 27, 339–346 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    K. Schmid, H. Ryssel, H. Muller, K. H. Wiedeburg and H. Betz, Properties of Al2O3 surface layers on Insb, investigated by backscattering techniques, Thin Solid Films 16, S11–S112 (1973).CrossRefGoogle Scholar
  5. 5.
    S. P. Murarka, Thermal oxidation of Gaas, Appl. Phys. Lett. 26, 812–814 (1975).CrossRefGoogle Scholar
  6. 6.
    R. F. C. Farrow, The evaporation of Gaas under equilibrium and nonequilibrium conditions using a modulated beam technique, J. Phys. D. 7, 1693–1701 (1974).CrossRefGoogle Scholar
  7. 7.
    J. F. Wager and C. W. Wilmsen, Thermal oxidation of Inp, J. Appl. Phys. 51, 180–181 (1980).CrossRefGoogle Scholar
  8. 8.
    C. T. Foxon, J. A. Harvey, and B. A. Joyce, The evaporation of Inp under Knudsen (equilibrium) and Langmuir (free) evaporation conditions, J. Phys. Chem. Solids 34, 2436–2448 (1973).CrossRefGoogle Scholar
  9. 9.
    Y. C. Cheng, Electronic states at the silicon-silicon-dioxide interface, Progr. Surf. Sci. 8, 181–218 (1977).CrossRefGoogle Scholar
  10. 10.
    N. M. Johnson, D. K. Biegelsen, and M. D. Moyer, Characteristic defects at the Si-SiO2 interface, in: The Physics of Mos Insulators (G. Lucovsky, S. T. Pantelides, and F. L. Galeener, eds.) pp. 311–315, Pergamon Press, New York, (1980).Google Scholar
  11. 11.
    W. A. Pliskin and H. S. Lehman, Structural evaluation of silicon oxide films, J. Electrochem. Soc. 112, 1013–1019 (1965).CrossRefGoogle Scholar
  12. 12.
    P. J. Harrop and D. S. Campbell, Selection of thin film capacitor dielectrics, Thin Solid Films 2, 273–292 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    P. J. Harrop and D. S. Campbell, in: Handbook of Thin Film Technology ( L. I. Maissel and R. Glang, eds.), McGraw-Hill, New York (1970).Google Scholar
  14. 14.
    F. H. Hielscher and H. M. Preier, Non-equilibrium C-V and I-V characteristics of metal-insulator-semiconductor capacitors, Solid-State Electron. 12, 527–538 (1969).ADSCrossRefGoogle Scholar
  15. 15.
    C. P. Smyth, Dielectric Behavior and Structure, McGraw-Hill, New York (1955).Google Scholar
  16. 16.
    N. P. Bogoroditskii and V. V. Pasynkov, Properties of Electronic Materials, Boston Tech. Pub. Cambridge, Mass. (1972).Google Scholar
  17. 17.
    R. A. Swalin, Thermodynamics of Solids, Wiley, New York (1962).MATHGoogle Scholar
  18. 18.
    L. J. Brillson, Advances in understanding metal-semiconductor interfaces by surface science techniques, J. Phys. Chem. Solids 44, 703–733 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    S. P. Kowalczyk, J. R. Waldrop, and R. W. Grant, Interfacial chemical reactivity of metal contacts with thin native oxides of Gaas, J. Vac. Sci. Technol. 19, 611–616 (1981).ADSCrossRefGoogle Scholar
  20. 20a.
    G. Samsonov (ed.), The Oxide Handbook, Plenum Press, New York (1973).Google Scholar
  21. 20b.
    O. Kuaschewski, E. Evans, and C. B. Alcock, Metallurgical Thermochemistry, 4th ed. Pergamon Press, Oxford (1967).Google Scholar
  22. 21.
    G. P. Schwartz, W. A. Sunder, and J. E. Griffiths, The In-P-O phase diagram: Construction and applications, J. Electrochem. Soc. 129, 1361–1367 (1982).CrossRefGoogle Scholar
  23. 22.
    M. Yamaguchi, Thermal nitridation of Inp, Japan. J. Appl. Phys. 19, L401–L404 (1980).ADSCrossRefGoogle Scholar
  24. 23.
    R. E. Bolz and G. L. Tuve (eds.), CRC Handbook of Tables for Applied Engineering Science, 2nd ed., CRC Press, Cleveland, Ohio (1976).Google Scholar
  25. 24.
    J. F. Wager and C. W. Wilmsen, Plasma-enhanced chemical vapor deposited Sio2/Inp interface, J. Appl. Phys. 53, 5789–5797 (1982).ADSCrossRefGoogle Scholar
  26. 25.
    J. F. Wager, W. H. Makky, C. W. Wilmsen, and L. G. Meiners, Oxidation of Inp in a plasma-enhanced chemical vapor deposited realtor, Thin Solid Films 95, 343–350 (1982).ADSCrossRefGoogle Scholar
  27. 26.
    W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, Nature of interface states at III-V insulator interfaces, Inst. Phys. Conf Ser. No. 50, 216–233 (1980).Google Scholar
  28. 27.
    W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, Unified defect model and beyond, J. Vac. Sci. Technol. 17, 1019–1027 (1980).ADSCrossRefGoogle Scholar
  29. 28.
    S. R. Morrison, The Chemical Physics of Surfaces, Plenum Press, New York (1977).Google Scholar
  30. 29.
    R. H. Bube, Photoconductivity of Solids, Wiley, New York (1960).MATHGoogle Scholar
  31. 30.
    R. L. Weiher and R. P. Ley, Optical properties of indium oxide, J. Appl. Phys. 37, 299–302 (1966).ADSCrossRefGoogle Scholar
  32. 31.
    J. F. Wager, C. W. Wilmsen, and L. L. Kazmerski, Estimation of the bandgap of InpO4, Appl. Phys. Lett. 42, 589–591 (1983).ADSCrossRefGoogle Scholar
  33. 32.
    J. F. Wager, K. M. Geib, C. W. Wilmsen, and L. L. Kazmerski, Native oxide formation and electrical instabilities at the insulator/Inp interface, J. Vac. Sci. Technol. B 1, 778–781 (1983).CrossRefGoogle Scholar
  34. 33.
    K. J. Bachmann, Properties, preparation, and device applications of indium phosphide, Ann. Rev. Mater. Sci. 11, 441–484 (1981).ADSCrossRefGoogle Scholar
  35. 34.
    M. Ghezzo and D. M. Brown, Diffusivity summary of B, Ga, P, As, and Sb in Sio2, J. Electrochem. Soc. 120, 146–148 (1973).CrossRefGoogle Scholar
  36. 35.
    C. W. Wilmsen, J. F. Wager, and J. Stannard, Chemical vapour deposited Sio2-Inp interface, Inst. Phys. Conf. Ser. No. 50, 251–257 (1980).Google Scholar
  37. 36.
    C. W. Wilmsen, Chemical composition and formation of thermal and anodic/III-V compound semiconducter interfaces, J. Vac. Sci. Technol. 19, 279 (1981).ADSCrossRefGoogle Scholar
  38. 37.
    R. H. Williams and I. T. McGovern, Surface characterization of indium phosphide, Surf Sci. 51, 14–28 (1975).ADSCrossRefGoogle Scholar
  39. 38.
    R. W. Grant, J. R. Waldrop, S. P. Kowalczyk, and E. A. Kraut, ‘Correlation of Gaas surface chemistry and interface Fermi-level position: A single defect model interpretation’ J. Vac. Sci. Technol. 19, 477–480 (1981).ADSCrossRefGoogle Scholar
  40. 39.
    J. A. Van Vecten, Simple theoretical estimates of the Schottky constants and virtual-enthalpies of single vacancy formation in zinc–blende and wurtzite type semiconductors, J. Electrochem. Soc. 122, 419–422 (1975).CrossRefGoogle Scholar
  41. 40.
    J. A. Van Vecten, Simple theoretical estimates of the enthalpy of antistructure PVR formation and virtual-enthalpies of isolated antisite defects in zinc-blende and wurtzite type semiconductors, J. Electrochem. Soc. 122, 423–429 (1975).ADSCrossRefGoogle Scholar
  42. 41.
    M. S. Daw and D. L. Smith, Energy levels of semiconductor surface vacancies, J. Vac. Sci. Technol. 17, 1028–1031 (1980).ADSCrossRefGoogle Scholar
  43. 42.
    J. D. Dow and R. E. Allen, Surface defects and Fermi-level pinning in Inp, J. Vac. Sci. Technol. 20, 659–661 (1982).ADSCrossRefGoogle Scholar
  44. 43.
    P. W. Chye, I. Lindau, P. Pianetta, C. M. Garner, C. Y. Su, and W. E. Spicer, Photoemission study of Au Schottky-barrier formation on Gasb, Gaas, and Inp using synchrotron radiation, Phys. Rev. B 18, 5545–5558 (1978).ADSCrossRefGoogle Scholar
  45. 44.
    F. P. Heiman and G. Warfield, The effects of oxide traps on the Mos capacitance, IEEE Trans. Electron. Devices ED-12, 167–178 (1965).Google Scholar
  46. 45.
    H. Koelmans and H. C. DeGraaff, Drift phenomena in CdSe thin film Fet’s, Solid-State Electron. 10, 997–1005 (1967).ADSCrossRefGoogle Scholar
  47. 46.
    D. Fritzsche, Interface studies on Inp Mis inversion Fet’s with Sio2 gate insulation, Inst. Phys. Conf. Ser. No. 50, 258–265 (1980).Google Scholar
  48. 47.
    R. Williams, Photoemission of electrons from silicon into silicon dioxide, Phys. Rev. 140, A569–575 (1965).CrossRefGoogle Scholar
  49. 48.
    V. J. Kapoor and R. A. Turi, Charge storage and distribution in the nitride layer of the metal-nitride-oxide-semiconductor structures, J. Appl. Phys. 52, 311–319 (1981).ADSCrossRefGoogle Scholar
  50. 49.
    V. J. Kapoor and S. B. Bibyk, Energy distribution of electron trapping defects in thick-oxide MNOS structures, in: The Physics of Mos Insulators, G. Lucovsky, S. T. Pantelides, and F. Galeener (eds.), pp. 117–121, Pergamon Press, New York (1980).Google Scholar
  51. 50.
    E. Harari and B. S. H. Royce, Trap structure of pyrolytic Al2O3 in Mos capacitors, Appl. Phys. Lett. 22, 106–107 (1973).ADSCrossRefGoogle Scholar
  52. 51.
    G. W. Gobeli and F. G. Allen, Photoelectric threshold and work function, in: Semiconductors and Semimetals, Vol. 2, R. K. Willardson and A. C. Beer (eds.), pp. 263–280, Academic Press, New York (1966).Google Scholar
  53. 52.
    D. M. Brown, P. V. Bray, F. K. Heumann, H. R. Philipp, and E. A. Taft, Properties of Sixoynz, films on Si, J. Electrochem. Soc. 115, 311–317 (1968).CrossRefGoogle Scholar
  54. 53.
    G. K. Eaton, R. E. J. King, F. D. Morten, A. T. Partridge, and J. G. Smith, Surface conductance on P-type Insb at 77 K, J. Phys. Chem. Solids 23, 1473–1477 (1962).ADSCrossRefGoogle Scholar
  55. 54.
    H. Pagina, Surface photoconduction in’ p-Insb single crystals, Phys. Status Solidi 28, K89–92 (1968).ADSCrossRefGoogle Scholar
  56. 55.
    H. Pagina, Field effect and surface photoconductivity studies on Insb single crystals, Phys. Status Solidi 34, 121–134 (1969).CrossRefGoogle Scholar
  57. 56.
    J. L. Davis, Surface states on the (111) surface of indium antimonide, Surf. Sci. 2, 33–39 (1964).ADSCrossRefGoogle Scholar
  58. 57.
    H. Huff, S. Kawaji, and H. C. Gatos, Field effect measurements on the A and B {111} surfaces of indium antimonide, Surf. Sci. 5, 399–409 (1966).Google Scholar
  59. 58.
    H. Huff, S. Kawaji, and H. C. Gatos, Electronic configuration of indium antimonide surfaces, Surf. Sci. 10, 232–238 (1968).Google Scholar
  60. 59.
    H. Sewell and J. C. Anderson, Slowstates in Insb/SiOx thin film transistors, Solid-State Electron. 18, 641–649 (1975).ADSCrossRefGoogle Scholar
  61. 60.
    D. E. Aspnes and A. A. Studna, Preparation of high quality surfaces on semiconductors by selective chemical etching, J. Vac. Sci. Technol. 20, 488–489 (1982).ADSCrossRefGoogle Scholar
  62. 61.
    D. E. Aspnes, Dielectric function and surface microroughness measurements of Insb by spectroscopic ellipsometry, J. Vac. Sci. Technol. 17, 1057–1060 (1980).ADSCrossRefGoogle Scholar
  63. 62.
    H. Iwasaki, Y. Mizokawa, R. Nishitani, and S. Nakamura, Effects of water vapor and oxygen excitation on oxidation of Gaas, GaP, and Insb surfaces studied by X-ray photoemission spectroscopy, Japan. J. Appl. Phys. 18, 1525 (1979).ADSCrossRefGoogle Scholar
  64. 63.
    H. Iwasaki, Y. Mizokawa, R. Nishitani, and S. Nakamura, X-ray photoemission study of the oxidation process at cleaved (100) surfaces of Gaas, GaP, and Insb, Japan. J. Appl. Phys. 17, 1925–1933 (1978).ADSCrossRefGoogle Scholar
  65. 64.
    R. P. Vasquez and F. J. Grunthaner, XPS study of interface formation of Cvd Sio2 on Insb, J. Vac. Sci. Technol. 19, 431–436 (1981).ADSCrossRefGoogle Scholar
  66. 65.
    R. P. Vasquez and F. J. Grunthaner, Chemical composition of the Sio2/Insb interface as determined by X-ray photoelectron spectroscopy, J. Appl. Phys. 52, 3509–3514 (1981).ADSCrossRefGoogle Scholar
  67. 66.
    G. W. Anderson, W. A. Schmidt, and J. Comas, Composition, Chemical bonding and contamination of low temperature SiOxNy insulating films, J. Electrochem. Soc. 125, 424–430 (1978).CrossRefGoogle Scholar
  68. 67.
    J. D. Langan, Ph.D. Thesis, Study and Characterization of Semiconductor Surfaces and Interfaces, University of California at Santa Barbara (1979).Google Scholar
  69. 68.
    J. D. Langan and C. R. Viswanathan, Characterization of improved Insb interfaces, J. Vac. Sci. Technol. 16, 1474–1477 (1979).ADSCrossRefGoogle Scholar
  70. 69.
    I. Flinn and D. C. Emmony, Interface characteristics of Ge3N4-(n-type)Gaas Mis devices, Phys. Lett. 6, 1107–1109 (1963).Google Scholar
  71. 70.
    I. Flinn and M. Briggs, Surface measurements on gallium arsenide, Surf. Sci. 2, 136–145 (1964).Google Scholar
  72. 71.
    I. Flinn, Surface properties of w-type gallium arsenide, Surf. Sci. 10, 32–57 (1968).Google Scholar
  73. 72.
    T. M. Valahas, J. S. Sochanski, and H. C. Gatos, Electrical characteristics of gallium arsenide “REAL” Surfaces, Surf. Sci 26, 41–53 (1971).Google Scholar
  74. 73.
    J. Lagowski, I. Baltov, and H. C. Gatos, Surface photovoltage spectroscopy and surface piezoelectric effect in Gaas, Surf. Sci. 40, 216–226 (1973).ADSCrossRefGoogle Scholar
  75. 74.
    E. W. Kreutz and P. Schroll, Field effect on real Gaas surfaces, Phys. Status Solidi A 53, 499–508 (1979).ADSCrossRefGoogle Scholar
  76. 75.
    C. C. Chang, P. H. Citrin, and B. Schwartz, Chemical preparation of Gaas surfaces and their characterization by Auger electron and X-ray photoemission spectroscopies, J. Vac. Sci. Technol. 14, 943–952 (1977).ADSCrossRefGoogle Scholar
  77. 76.
    T. Oda and T. Sugano, Studies on chemically etched silicon, gallium arsenide, and gallium phosphide surfaces by Auger electron spectroscopy, Japan. J. Appl. Phys. 15, 1317–1327 (1976).ADSCrossRefGoogle Scholar
  78. 77.
    D. E. Aspnes and A. A. Studna, Chemical etching and cleaning procedures for Si, Ge, and some III-V compound semiconductors, Appl. Phys. Lett. 15, 316–318 (1981).Google Scholar
  79. 78.
    P. J. Grunthaner, R. P. Vasquez, and F. J. Grunthaner, Chemical depth profiles of the Gaas/native oxide interface, J. Vac. Sci. Technol. 17, 1045–1051 (1980).ADSCrossRefGoogle Scholar
  80. 79.
    H. Becke, R. Hall, and J. White, Gallium arsenide Mos transistors, Solid-State Electron. 8, 813–823 (1965).ADSCrossRefGoogle Scholar
  81. 80.
    J. E. Foster and J. M. Swartz, Electrical characteristics of the silicon nitrios-gallium arsenide interface, J. Electrochem. Soc. 117, 1410–1417 (1970).CrossRefGoogle Scholar
  82. 81.
    J. A. Cooper, E. R. Ward, and R. J. Schwartz, Surface states and insulator raps at the Si3N4-Gaas interface, Solid-State Electron. 15, 1219–1227 (1972).ADSCrossRefGoogle Scholar
  83. 82.
    L. G. Meiners, Electrical properties of the gallium arsenide-insulator interface, J. Vac. Sci. Technol. 15, 1402–1407 (1978).ADSCrossRefGoogle Scholar
  84. 83.
    C. R. Zeisse, L. J. Messick, and D. L. Lile, Electrical properties of anodic and pyrolytic dielectrics on gallium arsenide, J. Vac. Sci. Technol. 14, 957–960 (1977).ADSCrossRefGoogle Scholar
  85. 84.
    B. Bayraktaroglu, W. M. Theis, and F. L. Schuermeyer, Gaas surface passivation using Si3N4: interface characteristics, Inst. Phys. Conf. Ser. No. 50, 280–286 (1980).Google Scholar
  86. 85.
    B. Bayraktaroglu and R. L. Johnson, Silicon-nitride-gallium-arsenide Mis structures produced by plasma enhanced deposition, J. Appl. Phys. 52, 3515–3519 (1981).ADSCrossRefGoogle Scholar
  87. 86.
    M. D. Clark and C. L. Anderson, Improvements in Gaas/plasma-deposited silicon nitride interface quality by predeposition Gaas surface treatment and post deposition annealing, J. Vac. Sci. Technol. 21, 453–456 (1982).ADSCrossRefGoogle Scholar
  88. 87.
    Y. Sato, The properties of the interface between gallium arsenide and silicon oxides, Japan. J. Appl. Phys. 7, 595–599 (1968).ADSCrossRefGoogle Scholar
  89. 88.
    K. Kamimura and Y. Sakai, The properties of Gaas-Al2O3 and Inp-Al1O3 interfaces and the fabrication of Mis field-effect transistors, Thin Solid Films 56, 215–223 (1979).ADSCrossRefGoogle Scholar
  90. 89.
    G. D. Bagratishvili, R. B. Dzhanelidze, N. I. Kurdiani, Y. I. Pashintsev, O. V. Saksaganski, and V. A. Skorikov, Gaas/Ge3N4/Al structures and Mis field-effect transistors based on them, Thin Solid Films 56, 209–213 (1979).ADSCrossRefGoogle Scholar
  91. 90.
    K. P. Pande, M. L. Chen, M. Yousuf, and B. Lalevic, Interface characteristics of Ge3N4-(n-type)Gaas Mis devices, Solid-State Electron. 24, 1107–1109 (1981).ADSCrossRefGoogle Scholar
  92. 91.
    J. Nishizawa and I. Shiota, GaOxNy-based multiple insulating layers on Gaas surfaces, Inst. Phys. Conf. Ser. No. 50, 287–292 (1980).Google Scholar
  93. 92.
    R. K. Smeltzer and C. C. Chen, Oxidized metal film dielectrics for III-V devices, Thin Solid Films 56, 75–80 (1979).ADSCrossRefGoogle Scholar
  94. 93.
    N. Suzuki, T. Hariu, and Y. Shibata, Effect of native oxide on the interface property of Gaas Mis structures, Appl. Phys. Lett. 33, 761–762 (1978).ADSCrossRefGoogle Scholar
  95. 94.
    P. Friedel and S. Gourrier, Interactions between H2 and N2 plasmas and a Gaas (100) surface: Chemical and electronic properties, Appl. Phys. Lett. 42, 509–511 (1983).ADSCrossRefGoogle Scholar
  96. 95.
    U. Konig and E. Sasse, XPS study of annealed Sio2/Gaas interfaces, J. Electrochem. Soc. 130, 950–952 (1983).CrossRefGoogle Scholar
  97. 96.
    R. W. Grant, K. R. Elliott, S. P. Kowalczyk, D. L. Miller, J. R. Waldrop, and J. R. Oliver, Gaas Surface Passivation for Device Applications, AFWAL-TR-82-1081, Final Report (July 1982).Google Scholar
  98. 97.
    J. Gyulai, J. W. Mayer, I. V. Mitchell, and V. Rodriquez, Outdiffusion through silicon oxide and silicon nitride layers on gallium arsenide, Appl. Phys. Lett. 17, 332–334 (1970).Google Scholar
  99. 98.
    J. S. Harris, F. H. Eisen, B. Welch, J. D. Haskell, R. D. Pashley, and J. W. Mayer, Influence of implantation temperature and surface protection on tellurium implantation in Gaas, Appl. Phys. Lett. 21, 601–603 (1972).ADSCrossRefGoogle Scholar
  100. 99.
    R. D. Pashley and B. M. Welch, Tellurium-implanted A+ layers in Gaas, Solid-State Electron. 18, 977–981 (1975).ADSCrossRefGoogle Scholar
  101. 100.
    K. V. Vaidyanathan, M. J. Helix, D. J. Wolford, B. G. Streetman, R. J. Blattner, and C. A. Evans, Jr., Study of encapsulants for annealing Gaas, J. Electrochem. Soc. 124, 1781–1784 (1977).CrossRefGoogle Scholar
  102. 101.
    D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type Inp epitaxial layers for Langmuir film deposition, Thin Solid Films 70, 261–283 (1980).ADSCrossRefGoogle Scholar
  103. 102.
    P. A. Bertrand, XPS study of chemically etched Gaas and Inp, J. Vac. Sci. Technol. 18, 28–33 (1981).ADSCrossRefGoogle Scholar
  104. 103.
    J. F. Wager, D. L. Ellsworth, S. M. Goodnick, and C. W. Wilmsen, Composition and thermal stability of thin native oxides on Inp, J. Vac. Sci. Technol. 19, 513–518 (1981).ADSCrossRefGoogle Scholar
  105. 104.
    L. Messick, Inp/Sio2 Mis structure, J. Appl. Phys. 47, 4949–4951 (1976).ADSCrossRefGoogle Scholar
  106. 105.
    L. Messick, D. L. Lile, A. R. Clawson, A microwave Inp/Sio2 Misfet, Appl. Phys. Lett. 32, 494–495 (1978).ADSCrossRefGoogle Scholar
  107. 106.
    D. L. Lile, D. A. Collins, L. G. Meiners, and L. Messick, n-Channel inversion-mode Inp Misfet, Electron. Lett. 14, 657–659 (1978).Google Scholar
  108. 107.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Inversion layers on Inp, J. Vac. Sci. Technol. 16, 1458–1461 (1979).ADSCrossRefGoogle Scholar
  109. 108.
    L. G. Meiners, Capacitance voltage and surface photovoltage, Thin Solid Films 56, 201–207 (1979).ADSCrossRefGoogle Scholar
  110. 109.
    J. Stannard, Transient capacitance in Gaas and Inp Mos capacitors, J. Vac. Sci. Technol. 16, 1508–1512 (1979).CrossRefGoogle Scholar
  111. 110.
    D. Fritzsche, Inp Sio2 Mis structures with reduced interface state density near conduction band, Electron. Lett. 14, 51–52 (1978).CrossRefGoogle Scholar
  112. 111.
    J. Woodward, D. C. Cameron, L. D. Irving, and G. R. Jones, The deposition of insulators onto Inp using plasma-enhanced chemical vapour deposition, Thin Solid Films 85, 61–69 (1981).ADSCrossRefGoogle Scholar
  113. 112.
    M. Okamura and T. Kobayashi, Slow current-drift mechanism in n-channel inversion type Inp-Misfet. Japan. J. Appl. Phys. 19, 2143–2150 (1980).ADSCrossRefGoogle Scholar
  114. 113.
    M. Okamura and T. Kobayashi, Improved interface in inversion type Inp-Misfet by vapor etching technique, Japan. J. Appl. Phys. 19, 2151–2156 (1980).ADSCrossRefGoogle Scholar
  115. 114.
    M. Okamura and T. Kobayashi, Current drifting behaviour in Inp Misfet with thermally oxidized Inp/Inp interface, Electron. Lett. 17, 941–942 (1981).Google Scholar
  116. 115.
    T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda, and Y. Hirota, Effect of pyrolytic Al2O3 deposition temperature on inversion-mode Inp metal-insulator-semi-conductor field-effect transistor, J. Appl. Phys. 52, 6434–6436 (1981).ADSCrossRefGoogle Scholar
  117. 116.
    K. P. Pande and S. Pourdavoud, Ge3N4/Inp Mis structures, IEEE Electron. Devices Lett. EDL-2, 182–184 (1981).Google Scholar
  118. 117.
    L. G. Meiners, Indirect plasma deposition of silicon dioxide, J. Vac. Sci. Technol. 21, 655–658 (1982).ADSCrossRefGoogle Scholar
  119. 118.
    D. L. Lile and M. J. Taylor, The effect of interfacial traps on the stability of insulated gate devices on Inp, J Appl. Phys. 54, 260–267 (1983).ADSCrossRefGoogle Scholar
  120. 119.
    J. R. Waldrop, S. P. Kowalczyk, and R. W. Grant, Correlation of Fermi-level energy and chemistry at Inp (100) interfaces, Appl. Phys. Lett. 42, 454–456 (1983).Google Scholar
  121. 120.
    W. C. Dautremont-Smith and L. C. Feldman, Surface structural damage produced in Inp (100) by RF plasma or sputter deposition, Thin Solid Films 105, 187–196 (1983).ADSCrossRefGoogle Scholar
  122. 121.
    P. D. Gardner, S. Y. Narayan, S. Colvin, and Y. Yun, G8.47In0.53As metal insulator field-effect transistors (MisFets) for microwave frequency applications, RCA Rev. 42, 542–556 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. F. Wager
    • 1
    • 2
  • C. W. Wilmsen
    • 1
    • 2
  1. 1.Department of Electrical and Computing EngineeringOregon State UniversityCorvallisUSA
  2. 2.Department of Electrical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations