Schottky Diodes and Ohmic Contacts for the III-V Semiconductors

  • Gary Y. Robinson


In this chapter a review of the electrical properties of metal-semiconductor contacts to the III-V semiconductors is given. Metal-semiconductor structures play an important role in devices based on the III-V compound semiconductors in the form of Schottky-barrier diodes or ohmic contacts. Important III-V devices utilizing Schottky-barrier junctions include solar cells, microwave mixer diodes, and metal semiconductor field-effect transistors (MESFETs) and their associated integrated circuits. Schottky diodes also find widespread use for III-V semiconductor materials characterization, including carrier concentration profiling and deep-level identification. Ohmic contacts with low resistance are necessary for high performance in many III-V devices. For example, the efficiency of light-emitting diodes and lasers is strongly influenced by contact resistance, and the noise behavior and the gain of an FET are significantly affected by the character of ohmic contacts. In all of these cases, the metal-semiconductor interface is formed on a chemically etched, as compared to an atomically clean, semiconductor surface. Thus, in this chapter the properties of Schottky diodes and ohmic contacts prepared by chemically etching the III-V semiconductors are emphasized, while the previous chapter dealt with metal-semiconductor interface formation on atomically clean surfaces.


Contact Resistance Ohmic Contact Schottky Barrier Chemically Etch Schottky Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).Google Scholar
  2. 2.
    S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, Chapter 8 (1969).Google Scholar
  3. 3.
    Proceedings of conference on the physics of compound semiconductors, J. Vac. Sci. Technol. 13 (1976); 14 (1977); 15 (1978); 16 (1979); 17 (1980); 19 (1981).Google Scholar
  4. 4.
    B. L. Sharma and S. C. Gupta, Metal-semiconductor barrier junctions, Solid-State Technol. 23, 97–101 (1980); 23, 90–95 (1980).Google Scholar
  5. 5.
    A. K. Sinha and J. M. Poate, Metal-compound semiconductor reactions, in: Thin Films—Interdiffusion and Reactions (J. M. Poate, K. N. Tu, and J. W. Mayer, eds.) pp. 407–432, Wiley, New York (1978).Google Scholar
  6. 6.
    W. Schottky, Naturwissenschaften 26, 843 (1938).ADSCrossRefGoogle Scholar
  7. 7.
    J. Bardeen, Surface states and rectification at a metal-semiconductor contact, Phys. Rev. 71, 717–727 (1947).ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Cowley and S. M. Sze, Surface states and barrier height of metal-semiconductor systems, J. Appl. Phys. 36, 3212–3220 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    S. Kurtin, T. C. McGill, and C. A. Mead, Fundamental transition in the electronic nature of solids, Phys. Rev. Lett. 22, 1433–1436 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    T. C. McGill and C. A. Mead, Electrical interface barriers, J. Vac. Sci. Technol. 11, 122–127 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    C. A. Mead, Metal-semiconductor surface barriers, Solid-State Electron. 9, 1023–1033 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    M. Schlüter, Chemical trends of Schottky barriers: A reexamination of some basic ideas, J. Vac. Sci. Tech. 15, 1374–1376 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    C. A. Mead and W. G. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134, A713–A716 (1964).CrossRefGoogle Scholar
  14. 14.
    J. O. McCaldin, T. C. McGill, and C. A. Mead, Correlation for III-V and II-VI semiconductors of the Au Schottky barrier energy with anion electronegativity, Phys. Rev. Lett. 36, 56–58 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    J. O. McCaldin, T. C. McGill, and C. A. Mead, Schottky barriers on compound semiconductors: The role of the anion, J. Vac. Sci. Technol. 13, 802–806 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, Unified mechanism for Schottky barrier formation and III-V oxide interface states, Phys. Rev. Lett. 44, 420–423 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, Unified defect model and beyond, J. Vac. Sci. Tech. 17, 1019–1027 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    M. S. Daw and D. L. Smith, Energy levels of semiconductor surface vacancies, J. Vac. Sci. Technol. 17, 1028–1031 (1980).ADSCrossRefGoogle Scholar
  19. 19.
    R. H. Williams, V. Montgomery, and R. R. Varma, Chemical effects in Schottky barrier formation, J. Phys. C 11, L735–L738 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    S. P. Kowalczyk, J. R. Waldrop, and R. W. Grant, Reactivity and interface chemistry during Schottky-barrier formation: Metals on thin native oxides of Gaas investigated by x-ray photoelectron spectroscopy, Appl. Phys. Lett. 38, 167–169 (1981).Google Scholar
  21. 21.
    R. W. Grant, J. R. Waldrop, S. P. Kowalczyk, and E. A. Kraut, Correlation of Gaas surface chemistry and interface Fermi-level position: A single defect model interpretation, J. Vac. Sci. Technol. 19, 477–480 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    S. P. Kowalczyk, J. R. Waldrop, and R. W. Grant, Interfacial chemical reactivity of metal contacts with thin native oxides of Gaas, J. Vac. Sci. Technol. 19, 611–616 (1981).ADSCrossRefGoogle Scholar
  23. 23.
    J. C. Phillips, Chemical bonding at metal-semiconductor interfaces, J. Vac. Sci. Technol. 11, 947–950 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    J. M. Andrews and J. C. Phillips, Chemical bonding and structure of metal-semiconductor interfaces, Phys. Rev. Lett. 35, 56–59 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    L. J. Brillson, Transition in Schottky barrier formation with chemical reactivity, Phys. Rev. Lett. 40, 260–263 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    L. J. Brillson, C. F. Brucker, A. D. Katnani, N. G. Stoffel, R. Daniels, and G. Margaritondo, Fermi level Pinning and Chemical structure of Inp-Metal Interfaces, Physics and Chemistry of Semiconductor Interfaces Conference, Asilomar, Calif. (1982).Google Scholar
  27. 27.
    E. Hokelek and G. Y. Robinson, Schottky contacts on chemically etched p- and n-type indium phosphide, Appl. Phys. Lett. 40, 426–428 (1982).Google Scholar
  28. 28.
    J. M. Woodwall and J. L. Freeouf, Gaas metalization: Some problems and trends, J. Vac. Sci. Technol. 19, 794–798 (1981).ADSCrossRefGoogle Scholar
  29. 29.
    J. L. Freeouf and J. M. Woodall, Schottky barriers: An effective work function model, Appl. Phys. Lett. 39, 727–729 (1981).Google Scholar
  30. 30.
    H. A. Bethe, Theory of the Boundary Layer of Crystal Rectifiers, MIT Radiation Laboratory Report 43–12 (1942).Google Scholar
  31. 31.
    C. R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes, Solid-state Electron. 8, 395–399 (1965).ADSCrossRefGoogle Scholar
  32. 32.
    C. R. Crowell and S. M. Sze, Current transport in metal-semiconductor barriers, Solid-State Electron. 9, 1035–1048 (1966).ADSCrossRefGoogle Scholar
  33. 33.
    Y. A. Goldberg, E. A. Posse, and B. V. Tsarenkov, Mechanism of flow of direct current in Gaas surface barrier structures, Sov. Phys.—Semicond. 9, 337–340 (1975).Google Scholar
  34. 34.
    A. K. Srivastava, B. M. Arora, and S. Guha, Measurement of Richardson constant of Gaas Schottky barriers, Solid-State Electron. 24, 185–191 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    J. M. Borrego, R. J. Gutmann, and S. Ashok, Richardson constant of Al- and Au-Gaas Schottky barrier diodes, Appl. Phys. Lett. 30, 169–171 (1977).Google Scholar
  36. 36.
    S. Ashok, J. M. Borrego, and R. J. Gutmann, Electrical characteristics of Gaas Schottky diodes, Solid-State Electron. 22, 621–631 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    B. L. Smith, Au-(n-type) Inp Schottky barriers and their use in determining majority carrier concentrations in n-type Inp, J. Phys. D 6, 1358–1362 (1973).ADSCrossRefGoogle Scholar
  38. 38.
    G. G. Roberts and K. P. Pande, Electrical characteristics of Au/Ti-(n-type)Inp Schottky diodes, J. Phys. D 10, 1323–1328 (1977).ADSCrossRefGoogle Scholar
  39. 39.
    G. S. Korotchenkov and I. P. Molodyan, Properties of surface-barrier M-n-Inp structures, Sov. Phys.—Semicond. 12, 141–143 (1977).Google Scholar
  40. 40.
    G. Y. Robinson, A Study of Metal-Semiconductor Contacts on Indium Phosphide, Air Force Systems Command, Griffiths Air Force Base, New York, Interim Report RADC-TR-80–108 (1980).Google Scholar
  41. 41.
    F. A. Padovani and R. Stratton, Field and thermionic-field emission in Schottky barriers, Solid-State Electron. 9, 695–707 (1966).ADSCrossRefGoogle Scholar
  42. 42.
    C. R. Crowell and V. L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers, Solid-State Electron. 12, 89–105 (1969).ADSCrossRefGoogle Scholar
  43. 43.
    A. M. Cowley, Depletion capacitance and diffusion potential of GaP Schottky diodes, J. Appl. Phys. 37, 3024–3032 (1966).ADSCrossRefGoogle Scholar
  44. 44.
    R. J. Stirn, Y. C. M. Yeh, E. Y. Wang, E. P. Ernst, and C. J. Wu, Recent improvements in AMos solar cells, Tech. Dig. Intern. Electron. Dev. Meeting, IEEE, Paper 4. 2 (1977).Google Scholar
  45. 45.
    A. M. Goodman, Metal-semiconductor barrier height measurement by the differential capacitance method—one carrier system, J. Appl. Phys. 34, 329–338 (1963).ADSCrossRefGoogle Scholar
  46. 46.
    R. H. Fowler, The analysis of photoelectric sensitivity curves for clean metals at various temperatures, Phys. Rev. 38, 45–56 (1931).MATHCrossRefGoogle Scholar
  47. 47.
    E. Hokelek and G. Y. Robinson, A comparison of Pd Schottky contacts on Inp, Gaas, and Si, Solid-State Electron. 24, 99–103 (1981).ADSCrossRefGoogle Scholar
  48. 48.
    C. L. Anderson, C. R. Crowell, and T. W. Kao, Effects of Thermal excitation and quantum mechanical transmission on photothreshold determination of Schottky barrier height, Solid-state Electron. 18, 705–713 (1975).ADSCrossRefGoogle Scholar
  49. 49.
    R. Hackam and R. Harrop, Electrical properties of Ni low doped n-type Gaas Schottky diodes, IEEE Trans. Electron Devices ED-19, 1231–1238 (1972).Google Scholar
  50. 50.
    C. J. Madams, D. V. Morgan, and M. J. Howes, Outmigration of gallium from Augaas interfaces, Electron. Lett. 11, 574–574 (1975).Google Scholar
  51. 51.
    A. K. Sinha and J. M. Poate, Effect of alloying behavior on the electrical characteristics of n-Gaas Schottky diodes metalized with W, Au, and Pt, Appl. Phys. Lett. 23, 666–668 (1973).Google Scholar
  52. 52.
    G. Y. Robinson, Variation of Schottky-barrier energy with indiffusion in Au and Ni/Au-Ge films on Gaas, J. Vac. Sci. Technol. 13, 884–887 (1976).ADSCrossRefGoogle Scholar
  53. 53.
    W. Tantraporn, Determination of low barrier heights in metal-semiconductor films, J. Appl. Phys. 41, 4669–4671 (1970).ADSCrossRefGoogle Scholar
  54. 54.
    B. R. Pruniaux and A. C. Adams, Dependence of barrier height of metal semiconductor contact (Au-Gaas) on Thickness of semiconductor surface layer, J. Appl. Phys. 43, 1980–1982 (1972).ADSCrossRefGoogle Scholar
  55. 55.
    B. L. Smith and E. H. Rhoderick, Possible sources of error in deduction of semiconductor impurity concentrations from Schottky-barrier (C, V) characteristics, J. Phys. D 2, 465–467 (1969).ADSCrossRefGoogle Scholar
  56. 56.
    H. Grinolds and G. Y. Robinson, A study of Al/Pd2si contacts on Si, J. Vac. Sci. Technol. 14, 75–78 (1977).ADSCrossRefGoogle Scholar
  57. 57.
    H. R. Grinolds and G. Y. Robinson, Pd/Ge contacts to n-type Gaas, Solid-State Electron. 23, 973–985 (1980).ADSCrossRefGoogle Scholar
  58. 58.
    P. K. Vasudev, B. L. Mattes, E. Pietras, and R. H. Bube, Excess capacitance and non-ideal Schottky barriers on Gaas, Solid-state Electron. 19, 557–559 (1976).ADSCrossRefGoogle Scholar
  59. 59.
    B. Pellegrini and G. Salardi, Excess capacitance in metal-Gaas contacts as an effect of nonlinear dielectric susceptibility, Solid-State Electron. 21, 465–469 (1978).ADSCrossRefGoogle Scholar
  60. 60.
    J. A. Copeland, Diode edge effect on doping profile measurements, IEEE Trans. Electron. Devices ED-17, 404–407 (1970).Google Scholar
  61. 61.
    D. Kahng, Au-n-type Gaas Schottky barrier and its application, Bell Syst. Tech. J. 43, 215–224 (1964).Google Scholar
  62. 62.
    C. F. Genzabella and C. M. Howell, Gallium arsenide Schottky mixer diodes, Symp. Gallium Arsenide Conf. Ser. 3 (Un. Reading, England), Paper 18, 131–137 (1966).Google Scholar
  63. 63.
    B. L. Smith, Ph.D. Thesis, Manchester University (1969).Google Scholar
  64. 64.
    A. Y. Cho and P. D. Dernier, Single-crystal-aluminum Schottky barrier diodes prepared by molecular-beam-epitaxy (MBE) on Gaas, J. Appl. Phys. 49, 3328–3332 (1978).ADSCrossRefGoogle Scholar
  65. 65.
    B. L. Smith, Gaas Schottky diodes with linear log I/V behavior over eight decades of current, Electron. Lett. 4, 332–333 (1968).CrossRefGoogle Scholar
  66. 66.
    G. B. Seirangyan and Y. A. Tkhorik, On the Schottky barrier height of metal-Gaas systems, Phys. Status Solidi A 13, K115–K118 (1972).ADSCrossRefGoogle Scholar
  67. 67.
    F. A. Padovani and G. C. Sumner, Experimental study of Au-Gaas Schottky diodes, J. Appl. Phys. 36, 3744–3747 (1965).ADSCrossRefGoogle Scholar
  68. 68.
    A. K. Sinha and J. M. Poate, Relative thermal stabilities of thin-film contacts to n-Gaas metalized with W, Au, and Pt, Japan. J. Appl. Phys. Suppl. 2, 841–844 (1974).Google Scholar
  69. 69.
    W. J. Devlin, RF sputtered Au-Mo contacts to n-Gaas, Electron. Lett. 16, 92–93 (1980).CrossRefGoogle Scholar
  70. 70.
    P. Guetin and G. Schreder, Quantitative aspects of the tunneling resistance in n-Gaas Schottky barriers, J. Appl. Phys. 42, 5689–5698 (1971).ADSCrossRefGoogle Scholar
  71. 71.
    S. Guha, B. M. Arora, and V. P. Salvi, High temperature annealing behavior of Schottky barriers on Gaas with gold and gold-gallium contacts, Solid-State Electron. 20, 431–432 (1977).ADSCrossRefGoogle Scholar
  72. 72.
    J. Massies, P. Devoldere, and N. T. Linh, Silver contact on Gaas(001) and Inp(001), J. Vac. Sci. Technol 15, 1353–1357 (1978).ADSCrossRefGoogle Scholar
  73. 73.
    R. D. Baertsch and J. R. Richardson, A. A. Gaas Schottky-barrier ultraviolet detector, J. Appl. Phys. 40, 229–235 (1969).ADSCrossRefGoogle Scholar
  74. 74.
    K. J. Linden, Self-passivated Gaas/W mixer diode, Solid-State Electron. 19, 843–849 (1976).ADSCrossRefGoogle Scholar
  75. 75.
    A. K. Sinha and J. M. Poate, Effect of alloying behavior on the electrical characteristics of n-Gaas Schottky diodes with W, Au, and Pt, Appl. Phys. Lett. 23, 666–668 (1973).Google Scholar
  76. 76.
    C. Barret and A. Vapaille, Study of Pt-Gaas interface, Solid-State Electron. 21, 1209–1212 (1978).ADSCrossRefGoogle Scholar
  77. 77.
    E. Hokelek, A study of Schottky contacts on Inp, Ph.D. Thesis, University of Minnesota, Minneapolis, Minn. (1982).Google Scholar
  78. 78.
    P. M. Batev, M. D. Ivanovitch, E. I. Kafedjiiska, and S. S. Simeonov, Schottky-barrier on W-Gaas contact, Phys. Status Solidi A 45, 671–675 (1978).ADSCrossRefGoogle Scholar
  79. 79.
    A. K. Sinha, Metalization scheme for n-Gaas Schottky diodes incorporating sintered contacts and a W diffusion barrier, Appl. Phys. Lett. 26, 171–173 (1975).Google Scholar
  80. 80.
    O. Yu. Borkovskaya, N. L. Dmitruk, R. V. Konakova, and M. Yu. Filatov, Influence of low temperature thermotreatment on the characteristics of Cr-Gaas and Au-Cr- Gaas Schottky diodes, Electron. Lett. 14, 700–701 (1978).Google Scholar
  81. 81.
    M. Hagio, H. Takagi, A. Nagashimo, and G. Kano, Barrier height change of Pt/Cr/n-Gaas Schottky contacts due to heat treatments, Solid-State Electron. 22, 347–348 (1979).ADSCrossRefGoogle Scholar
  82. 82.
    P. M. Batev, M. D. Ivanovitch, E. I. Kafedjiiska, and S. S. Simeonov, Schottky barrier at a Mo-Gaas contact, Int. J. Electron. 48, 511–517 (1980).CrossRefGoogle Scholar
  83. 83.
    J. A. Calviello, J. L. Wallace, and P. R. Bie, High performance quasi-planar varactors for millimeter waves, IEEE Trans. Election. Devices ED-21, 624 (1974).Google Scholar
  84. 84.
    K. Kajiyama, S. Sakata, and O. Ochi, Barrier height of Hf/Gaas diode, J. Appl. Phys. 46, 3221–3222 (1975).ADSCrossRefGoogle Scholar
  85. 85.
    R. H. Williams, V. Montgomery, R. R. Varma, and A. McKinley, The influence of interfacial layers on nature of gold contacts to Si and Inp, J. Phys. D 10, L253–L256 (1977).ADSCrossRefGoogle Scholar
  86. 86.
    J. S. Barrera and R. J. Archer, Inp Schottky-gate field epect transistors, IEEE Trans. Election. Devices ED-22, 1023–1031 (1975).Google Scholar
  87. 87.
    O. Wada and A. Majerfeld, Low leakage nearly ideal Schottky barriers to n-Inp, Electron. Lett. 14, 125–126 (1978).CrossRefGoogle Scholar
  88. 88.
    D. V. Morgan and J. Frey, Increasing the effective barrier height of Schottky contacts to n-InxGa1-xAs, Electron. Lett. 14, 737–739 (1978).Google Scholar
  89. 89.
    A. Christou and W. T. Anderson, Jr., Material reactions and barrier height variations in sintered Al-Inp Schottky diodes, Solid-State Electron. 22, 857–863 (1979).ADSCrossRefGoogle Scholar
  90. 90.
    R. J. Archer and J. Cohen, Control of Thin-Film Interface Barriers, Technical Report No. ALFAL-TR-70-256, Air Force Avionics Laboratory, Wright Patterson Air Force Base (1970).Google Scholar
  91. 91.
    H. B. Kim, A. F. Lovas, G. C. Sweeney, and T. M. S. Heng, Effects of heat treatment on metal-Inp Schottky diodes characterized by secondary ion mass spectrometry, International Symposium on Gallium Arsenide, Edinburgh; Inst. Phys. Conf. Ser. No. 336, 145 (1977).Google Scholar
  92. 92.
    N. Szydlo and J. Oliver, Behavior of Air/Inp Schottky diodes under heat treatment, J. Appl. Phys. 50, 1445–1449 (1979).ADSCrossRefGoogle Scholar
  93. 93.
    K. Hattori and Y. Izumi, The electrical characteristics of Inp Schottky diodes, J. Appl. Phys. 52, 5699–5700 (1981).ADSCrossRefGoogle Scholar
  94. 94.
    J. S. Escher, L. W. James, R. Sankaran, G. A. Antypas, R. L. Moon, and R. L. Bell, Schottky-barrier height of Au/p-Ingaasp alloys lattice matched to Inp, J. Vac. Sci. Technol. 13, 874–876 (1976).ADSCrossRefGoogle Scholar
  95. 95.
    J. S. Escher, P. E. Gregory, and T. J. Maloney, Hot electron attenuation length in Ag/Inp Schottky diodes, J. Vac. Sci. Technol. 16, 1394–1397 (1979).ADSCrossRefGoogle Scholar
  96. 96.
    K. Kaminura, T. Suzuki, and A. Kunioka, Metal-insulator-semiconductor Schottky-barrier solar cells fabricated on Inp, Appl. Phys. Lett. 38, 259–261 (1981).Google Scholar
  97. 97.
    H. G. White and R. A. Logan, GaP surface-barrier diodes, J. Appl. Phys. 34, 1990–1997 (1963).ADSCrossRefGoogle Scholar
  98. 98.
    B. L. Smith, Near ideal Au-GaP Schottky diodes, J. Appl. Phys. 40, 4675–4676 (1969).ADSCrossRefGoogle Scholar
  99. 99.
    B. L. Smith and M. Abbott, Minority carrier diffusion length in liquid epitaxial GaP, Solid-State Electron. 15, 361–369 (1972).ADSCrossRefGoogle Scholar
  100. 100.
    Yu. A. Goldberg, E. A. Posse, and B. V. Tsarenkov, Ideal GaP surface-barrier diodes, Electon. Lett. 7, 601–602 (1971).Google Scholar
  101. 101.
    K. Okamoto, C. E. C. Wood, and L. F. Eastman, Schottky barrier heights of molecular beam epitaxial metal-AlGaas structures, Appl. Phys. Lett. 38, 636–638 (1981).Google Scholar
  102. 102.
    M. F. Millea, M. McColl, and A. H. Silver, Electrical characterization of metal/inas contacts, J. Electron. Mater. 5, 321–340 (1976).ADSCrossRefGoogle Scholar
  103. 103.
    J. N. Walpole and K. W. Nill, Capacitance-voltage characteristics of metal barriers on pPbTe and pinAs, J. Appl. Phys. 42, 5609–5617 (1971).ADSCrossRefGoogle Scholar
  104. 104.
    M. L. Korwin-Pawlowski and E. L. Heasell, The properties of some metal-Insb surface barrier diodes, Solid-State Electron. 18, 849–852 (1975).ADSCrossRefGoogle Scholar
  105. 105.
    R. Chin, R. A. Milano, and H. D. Law, Schottky barrier height of Au on n-type Ga1-xAlxsb (0.0 < x < 0.65), Electron. Lett. 16, 626–627 (1980).ADSCrossRefGoogle Scholar
  106. 106.
    A. A. Gutkin, M. V. Dmitriev, and D. N. Nasledov, Photosensitivity of Au-nGaP surface-barrier diodes in the 1.4–5.2 eV spectral range, Sov. Phys.—Semicond. 6, 429–433 (1972).Google Scholar
  107. 107.
    T. F. Lei, C. L. Lee, and C. Y. Chang, Metal/n-GaP Schottky barrier heights, Solid-State Electron. 22, 1035–1037 (1979).ADSCrossRefGoogle Scholar
  108. 108.
    C. R. Wronski, Effects of deep centers in n-type GaP Schottky barriers, J. Appl. Phys. 41, 3805–3812 (1970).ADSCrossRefGoogle Scholar
  109. 109.
    Y. Nannichi and G. L. Pearson, Properties of GaP Schottky diodes at elevated temperatures, Solid-State Electron. 12, 341–348 (1969).ADSCrossRefGoogle Scholar
  110. 110.
    L. P. Krukovskaya, L. S. Berman, A. ya.Vul’, and A. Ya.Shik, Surface-barrier structure on gallium antimonide, Sov. Phys.—Semicond. 11, 1109–1110 (1977).Google Scholar
  111. 111.
    W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, New and unified model for Schottky barrier III-V insulator states formation, J. Vac. Sci. Technol. 16, 1422–1433 (1979).ADSCrossRefGoogle Scholar
  112. 112.
    G. H. Parker and C. A. Mead, Energy-momentum relationship in InAs, Phys. Rev. Lett. 21, 605–606 (1968).ADSCrossRefGoogle Scholar
  113. 113.
    Y. A. Goldberg, T. Y. Rafiev, B. V. Tsarenkov, and Y. P. Yakovlev, Surface barrier structures of metal and n-type Ga1-xAlxas and their energy band diagram, Sov. Phys.—Semicond. 6, 398–401 (1972).Google Scholar
  114. 114.
    V. L. Rideout, Dependence of barrier height on energy gap in Au n-type Gaas1-xPx Schotttky diodes, Solid-State Electron. 17, 1107–1108 (1974).ADSCrossRefGoogle Scholar
  115. 115.
    J. S. Best, The Schottky-barrier height of Au on n-Ga1-xAlxAs as a function of Alas content, Appl. Phys. Lett. 34, 522–524 (1979).Google Scholar
  116. 116.
    R. E. Allen and J. D. Dow, Unified theory of point-defect electronic states, core excitations, and intrinsic electronic states at semiconductor surfaces, J. Vac. Sci. Technol. 19, 383–387 (1981).ADSCrossRefGoogle Scholar
  117. 117.
    M. S. Daw, D. L. Smith, C. A. Swartz, and T. C. McGill, Surface vacancies in II-VI and III-V zinc blende semiconductors, J. Vac. Sci. Technol. 19, 508–512 (1981).ADSCrossRefGoogle Scholar
  118. 118.
    J. Barnard, H. Ohno, C. E. C. Wood, and L. F. Eastman, Double heterostructure Ga0.47In0.53AS Mesfets with submicron gates, IEEE Electron Devices Lett. EDL-1, 174–176 (1980).Google Scholar
  119. 119.
    K. Kajiyama, Y. Mizushima, and S. Sakata, Schottky barrier height of n-InxGa1-xAs diodes, Appl. Phys. Lett. 23, 458–459 (1973).Google Scholar
  120. 120.
    T. F. Kuech and J. O. McCaldin, Composition dependence of Schottky barrier heights for Au on chemically etched Inxga1-xp surfaces, J. Vac. Sci. Technol. 17, 891–893 (1980).ADSCrossRefGoogle Scholar
  121. 121.
    W. Keeler, W. J. Roth, and E. Fortin, photovoltaic effect and Schottky barriers in Au-In1-xGaxSb systems, Can. J. Phys. 58, 63–67 (1980).ADSGoogle Scholar
  122. 122.
    T. P. Lee, C. A. Burrus, M. A. Pollock, and R. E. Nahory, High Speed Schottky-Barrier photodiode in LPE InxGa1-xAs for 1.0–1.1 μm Region, Developmental Research Conference. Paper IVa-3, Ottawa, Canada (June 24–26, 1975 ).Google Scholar
  123. 123.
    P. K. Bhattacharya and M. D. Yeaman, Enhanced barrier height of Au- In1-xGaxAsyP1-y Schottky diodes, Solid-State Electron. 24, 297–300 (1981).ADSCrossRefGoogle Scholar
  124. 124.
    A. Y. C. Yu, H. J. Gopen, and R. K. Waits, Contacting Technology for Gaas, Final Technical Report, No. AFAL-TR-70-196, AFAL (AFSC), W-PAFB (1970).Google Scholar
  125. 125.
    L. L. Chang and G. L. Pearson, The solubilities and distribution coefficients of Zn in Gaas and GaP, Phys. Chem. Solids 25, 23–30 (1964).ADSCrossRefGoogle Scholar
  126. 126.
    Y. I. Nissim, J. F. Gibbons, and R. B. Gold, Non-alloyed ohmic contacts to n-Gaas by CW laser assisted diffusion from a SnO2/Sio2 source, IEEE Electron Devices ED-28, 607–609 (1981).Google Scholar
  127. 127.
    T. F. Deutsch, D. J. Ehrlich, R. M. Osgood, Jr., and Z. L. Liau, Ohmic contact formation on Inp by pulsed laser photochemical doping, Appl Phys. Lett. 36, 847–849 (1980).Google Scholar
  128. 128.
    P. A. Pianetta, C. A. Stolte, and J. L. Hansen, Non-alloyed ohmic contacts to electron- beam-annealed Se-ion-implanted Gaas, Appl. Phys. Lett. 36, 597–599 (1980).Google Scholar
  129. 129.
    M. Helix, K. Vaidynanathan, B. Streetman, H. Dietrich, and P. Chatterjee, P. F. Plasma deposition of silicon nitride layers, Thin solid Films 55, 143–148 (1978).Google Scholar
  130. 130.
    T. Onuma, T. Hirao, and T. Sugawa, Study of encapsulants for annealing Si-implanted Gaas, J. Electrochem. Soc. 129, 837–840 (1982).CrossRefGoogle Scholar
  131. 131.
    E. Yamaguchi, T. Nishioda, and Y. Ohmachi, Ohmic contacts to Si-implanted Inp, Solid-State Electron. 24, 263–265 (1981).ADSCrossRefGoogle Scholar
  132. 132.
    P. A. Barnes, H. J. Leamy, J. M. Poate, and S. D. Ferris, Ohmic contacts produced by laser-annealing Te-implanted Gaas, Appl. Phys. Lett. 33, 965–967 (1978).ADSCrossRefGoogle Scholar
  133. 133.
    R. L. Mozzi, W. Fabian, and F. J. Pierkarski, Non-alloyed ohmic contacts to n-Gaas by pulse-electron-beam-annealed Se implants, Appl. Phys. Lett. 35, 337–339 (1979).Google Scholar
  134. 134.
    Z. L. Liau, N. L. DeMeo, J. P. Donnelly, D. E. Mull, R. Bradbury, and J. P. Lorenzo, Frabrication of Ohmic Contacts on p-type Inp Using Ion Implantation and Laser Annealing, Paper presented at the Materials Research Society Metting, Cambridge, Mass. (November 1979).Google Scholar
  135. 135.
    H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction Leeds, Academic Press, New York (1977).Google Scholar
  136. 136.
    A. Y. Cho and J. R. Arthur, Molecular Beam Epitaxy, Progr. Solid-State Chem. 10, 157–191 (1975).CrossRefGoogle Scholar
  137. 137.
    D. DeSimone, G. Wicks, and C. E. C. Wood, Doping Limits in MBE Gaas, Paper E.O, MBE Workshop, University of California, Santa Barbara (1981).Google Scholar
  138. 138.
    P. A. Barnes and A. Y. Cho, Non-alloyed ohmic contacts to n-Gaas by molecular beam epitaxy, Appl. Phys. Lett. 33, 651–653 (1978).Google Scholar
  139. 139.
    J. V. DiLorenzo, W. C. Niehaus, and A. Y. Cho, Non-alloyed and in situ ohmic contacts to highly doped n-type Gaas layers grown by molecular beam epitaxy for field effect transistors, J. Appl. Phys. 50, 951–954 (1979).ADSCrossRefGoogle Scholar
  140. 140.
    W. T. Tsang, In situ ohmic-contact formation to n- and p-Gaas by molecular beam epitaxy, Appl. Phys. Lett. 33, 1022–1025 (1978).Google Scholar
  141. 141.
    T. Sebestyen, M. Menyhard, and D. Szigethy, In situ measurements of arsenic losses during annealing of the usual evaporated contacts of Gaas Gunn diodes, Electron. Lett. 12, 96–97 (1976).CrossRefGoogle Scholar
  142. 142.
    T. Sebestyen, H. Hartnagel, and L. H. Herron, New method for producing ideal metal-semiconductor ohmic contacts, Electron. Lett. 10, 372–373 (1975).Google Scholar
  143. 143.
    H. T. Mills and H. L. Hartnagel, Ideal ohmic cpntacts to Inp, Electron. Lett. 11, 621–622 (1975).Google Scholar
  144. 144.
    S. Margalit, D. Fekete, D. M. Pepper, Chien-Ping Lee, and A. Yariv, Q-switched ruby laser alloying of ohmic contacts on gallium arsenide epilayers, Appl. Phys. Lett. 33, 346–347 (1978).Google Scholar
  145. 145.
    R. B. Gold, R. A. Powell, and J. F. Gibbons, Laser Alloying of Au-Ge Ohmic Contacts on Gaas, AIP Conference Proceedings No. 50; Laser-solid interactions and laser processing, Am. Inst. Phys. 1979 635–640.Google Scholar
  146. 146.
    W. T. Anderson, A. Christou, and J. F. Giuliani, Laser annealed Ta/Ge and Ni/Ge ohmic contacts to Gaas, IEEE Electron. Devices Lett. EDL-2, 115–118 (1981).Google Scholar
  147. 147.
    A. H. Oraby, K. Murakami, Y. Yuba, K. Gamo, and S. Namba, Laser annealing of ohmic contacts on Gaas, Appl. Phys. Lett. 38, 562–564 (1981).ADSCrossRefGoogle Scholar
  148. 148.
    C. P. Lee, J. L. Tandom, and P. J. Stocker, Alloying behavior of Au-Ge/Pt ohmic contacts to Gaas by pulsed electron beam and furnace heating, Electron. Lett. 16, 849–850 (1980).Google Scholar
  149. 149.
    R. D’Angelo and P. A. Verlangieri, Ohmic contacts on n-Gaas produced by spark alloying, Electron. Lett. 17, 290–291 (1981).Google Scholar
  150. 150.
    A. K. Sinha, T. E. Smith, and H. J. Levinstein, Sintered ohmic contacts to n- and ¿–type Gaas, IEEE Trans. Electron. Devices ED-22, 218–223 (1975).Google Scholar
  151. 151.
    J. Massies, J. Chaplait, M. Laviron, and N. T. Linh, Monocrystalline aluminum ohmic Contact to nGaas by H2S Adsorption, Appl. Phys. Lett. 38, 693–695 (1981).ADSCrossRefGoogle Scholar
  152. 152.
    R. Stall, C. E. C. Wood, and L. F. Eastman, Ultra low resistance ohmic contacts to n-Gaas, Electron. Lett. 15, 800–801 (1979).Google Scholar
  153. 153.
    R. A. Stall, C. E. C. Wood, K. Board, N. Dandekar, L. F. Eastman, and J. Devlin, A study of Ge/Gaas interface grown by molecular beam epitaxy, J. Appl. Phys. 52, 4062–4069 (1981).ADSCrossRefGoogle Scholar
  154. 154.
    J. M. Woodall, J. L. Freeouf, G. D. Pettit, T. Jackson, and P. Kirchner, Ohmic contacts to n-type Gaas using graded band gap layers of GaxIn1-xAs grown by molecular beam epitaxy, J. Vac. Sci. Technol. 19, 626–627 (1981).ADSCrossRefGoogle Scholar
  155. 155.
    R. H. Cox and H. Strack, Ohmic contacts for Gaas devices, Solid-State Electron. 10, 1213–1218 (1967).ADSCrossRefGoogle Scholar
  156. 156.
    R. D. Brooks and H. G. Mathes, Spreading resistance between constant potential surfaces, Bell Syst. Tech. J. 50, 775–784 (1971).Google Scholar
  157. 157.
    L. E. Terry and R. W. Wilson, Metalization systems for Si integrated circuits, Proc. IEEE 57, 1580–1586 (1969).CrossRefGoogle Scholar
  158. 158.
    E. Kuphal, Low resistance ohmic contacts to n–and p–Inp, Solid–State Electron. 24, 69–78 (1981).ADSCrossRefGoogle Scholar
  159. 159.
    Y. K. Fang, C. Y. Chang, and Y. K. Su, Contact resistance in metal–semiconductor systems, Solid–State Electron. 22, 933–938 (1979).ADSCrossRefGoogle Scholar
  160. 160.
    W. Shockley, Research and Investigation of Inverse Epitaxial UHF Power Transistor, Final Technical Report, No. Al–TDR–64–207, AFAL (AFSC), W–PAFB (1964).Google Scholar
  161. 161.
    P. L. Hower, W. W. Hooper, B. R. Cairns, R. D. Fairmen, and D. A. Tremere, The Gaas field-effect transistor, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Chapter 3, Vol. 7, Part A, pp. 147–200, Academic Press, New York (1973).Google Scholar
  162. 162.
    C-Y. Ting and C. Y. Chen, A study of the contacts of a diffused resistor, Solid–State Electron. 14, 433–438 (1971).ADSCrossRefGoogle Scholar
  163. 163.
    H. Murrmann and D. Widman, Current crowding on metal contacts to planar devices, IEEE Trans. Electron. Devices ED–16, 1022–1024 (1969).Google Scholar
  164. 164.
    H. H. Berger, Models for contacts to planar devices, Solid–State Electron. 15, 145–158 (1972).ADSCrossRefGoogle Scholar
  165. 165.
    H. H. Berger, Contact resistance and contact resistivity, J. Electrochem. Soc. 119, 507–514 (1972).CrossRefGoogle Scholar
  166. 166.
    H. H. Berger, Dig. Tech. Papers, ISSCC, pp. 160–161 (1969).Google Scholar
  167. 167.
    G. K. Reeves, Specific contact resistance using a circular transmission line model, Solid–State Electron. 23, 487–490 (1980).ADSCrossRefGoogle Scholar
  168. 168.
    S. B. Schuldt, An exact derivation of contact resistance to planar devices, Solid–State Electron. 21, 715–719 (1978).ADSCrossRefGoogle Scholar
  169. 169.
    A. A. Immorlica, D. R. Decker, and W. A. Hill, Diagnostic pattern for Gaas PET material development and process monitoring, IEEE Trans. Electron. Devices ED–27, 2285 (1980).Google Scholar
  170. 170.
    G. K. Reeves and H. B. Harrison, Obtaining the specific contact resistance from transmission line model measurements, IEEE Electron. Devices Lett. EDL–3, 111–113 (1982).Google Scholar
  171. 171.
    B. Schwartz, ed., Ohmic Contacts to Semiconductors, Electrochemical Society, New York (1969).Google Scholar
  172. 172.
    V. L. Rideout, A review of the theory and technology for ohmic contacts to group III–V compound semiconductors, Solid–State Electron. 18, 541–550 (1975).ADSCrossRefGoogle Scholar
  173. 173.
    L. D. Libov, S. S. Meskin, D. N. Nasledov, V. E. Sedov, and B. V. Tsarenkov, Ohmic contacts of metals with Gaas (review), Instrum. Expt. Tech. 4, 746–753 (1965).Google Scholar
  174. 174.
    N. Braslau, J. B. Gunn, and J. L. Staples, Metal–semiconductor contacts for Gaas bulk-effect devices, Solid–State Electron. 10, 381–383 (1967).ADSCrossRefGoogle Scholar
  175. 175.
    A. M. Andrews and H. Holonyak, Jr., Properties of w-type Ge-doped epitaxial Gaas layers grown from Au-rich melts, Solid–State Electron. 15, 601–604 (1972).ADSCrossRefGoogle Scholar
  176. 176.
    G. Y. Robinson, Metallurgical and electrical properties of alloyed Ni/Au–Ge films on n–type Gaas, Solid–State Electron. 18, 331–342 (1975).ADSCrossRefGoogle Scholar
  177. 177.
    H. Paria and H. Hartnagel, Experimental evidence for Gaas surface quality affecting ohmic contact properties, Appl. Phys. 10, 97–99 (1976).Google Scholar
  178. 178.
    T. Hara and T. Inada, Trends in ion implantation in gallium arsenide, Solid–State Technol. 22, 69–74 (1979).Google Scholar
  179. 179.
    K. Ohata, T. Nozaki, and N. Kawamura, Improved noise performance of Gaas Mesfets with selectively implanted n+ source regions, IEEE Trans. Electron. Devices ED–24, 1129–1131 (1978).Google Scholar
  180. 180.
    N. Braslau, Alloyed ohmic contacts to Gaas, J. Vac. Sci. Technol. 19, 803–807 (1981).ADSCrossRefGoogle Scholar
  181. 181.
    M. Heiblum, M. I. Nathan, and C. A. Chang, Characteristics of AuGeNi ohmic contacts to Gaas, Solid–State Electron. 25, 185 (1982).ADSCrossRefGoogle Scholar
  182. 182.
    Yu. Goldberg and B. V. Isarenkov, Dependence of resistivity of metal-gallium arsenide ohmic contacts on the carrier density, Sov. Phys.—Semicond. 3, 1447–1448 (1970).Google Scholar
  183. 183.
    W. D. Edwards, W. A. Hartman, and A. B. Torrens, specific contact resistance of ohmic contacts to gallium arsenide, Solid–State Electron. 15, 387–392 (1972).ADSCrossRefGoogle Scholar
  184. 184.
    R. S. Popovic, Metal-n-type semiconductor ohmic contact with a shallow N+ surface layer, Solid-State Electron. 21, 1133–1138 (1978).ADSCrossRefGoogle Scholar
  185. 185.
    J. G. Werthen and D. R. Scifres, Ohmic contacts to n-Gaas using low temperature anneal, J. Appl. Phys. 52, 1127–1129 (1981).ADSCrossRefGoogle Scholar
  186. 186.
    H. J. Gopen and A. Y. C. Yu, Ohmic contacts to epitaxial p-Gaas, Solid–State Electron. 14, 515–517 (1971).ADSCrossRefGoogle Scholar
  187. 187.
    T. Sanada end O. Wada, Ohmic contacts to p–Gaas with Au/Zn/Au structure, Japan. J. Appl. Phys. 19, L491–L494 (1980).ADSCrossRefGoogle Scholar
  188. 188.
    H. Matino and M. Tokunaga, Contact resistance of several metals and alloys to Gaas, J. Electrochem. Soc. 116, 709–711 (1979).CrossRefGoogle Scholar
  189. 189.
    H. Morkof, T. J. Drummond, and C. M. Stanchak, Schottky barriers and ohmic contacts on n-type Inp based compound semiconductors for microwave Fets, IEEE Trans. Electron. Devices ED–28, 1–7 (1981).Google Scholar
  190. 190.
    L. M. Schiavone and A. A. Pritchard, Ohmic contact to moderately resistive p-type Inp, J. Appl. Phys. 46, 452–453 (1974).ADSCrossRefGoogle Scholar
  191. 191.
    F. A. Thiel, D. D. Bacon, E. Buehler, and K. J. Bachmann, Contacts to p-type Inp, J. Electrochem. Soc. 124, 317–318 (1977).CrossRefGoogle Scholar
  192. 192.
    L. P. Erickson, A. Waseem, and G. Y. Robinson, Charecterization of ohmic contacts to Inp, Thin Solid Films 64, 421–426 (1979).ADSCrossRefGoogle Scholar
  193. 193.
    W. Tseng, A. Christou, H. Day, J. Davey, and B. Wilkins, Ohmic contacts to lightly doped n and p indium phosphide surfaces, J. Vac. Sci. Technol. 19, 623–625 (1981).ADSCrossRefGoogle Scholar
  194. 194.
    H. Temkin, R. J. McCoy, V. G. Keramidas, and W. A. Bonner, Ohmic contacts to p–type Inp using Be–Au metalization, Appl. Phys. Lett. 36, 444–446 (1980).Google Scholar
  195. 195.
    A. J. Valois and G. Y. Robinson, Au/Be ohmic contacts to p–type indium phosphide, Solid–State Electron. 25, 973 (1982).ADSCrossRefGoogle Scholar
  196. 196.
    A. Piotrowska, P. Auvay, A. Guivarch, and G. Pelois, On the formation of binary compounds in Au/Inp system, J. Appl. Phys. 52, 5112–5117 (1981).ADSCrossRefGoogle Scholar
  197. 197.
    K. K. Shih and J. M. Blum, Contact resistances of Au–Ge–Ni, Au–Zn and A1 to III–V Compounds, Solid–State Electron. 15, 1177–1180 (1972).ADSCrossRefGoogle Scholar
  198. 198.
    M. Itoh, T. Itoh, Y. Yammamoto, and K. G. Stephens, Low resistance ohmic contacts containing Sb to GaP, Solid–State Electron. 23, 447–448 (1980).ADSCrossRefGoogle Scholar
  199. 199.
    J. Pfeifer, Ohmic contact to p-type GaP, Solid-State Electron. 19, 927–929 (1976).ADSCrossRefGoogle Scholar
  200. 200.
    T. F. Lei, C. L. Lee, and C. Y. Chang, Specific contact resistance of the Ni/Au–Ge/nGaP system, Solid-State Electron. 21, 385–391 (1978).ADSCrossRefGoogle Scholar
  201. 201.
    W. A. Brantley, B. Schwartz, V. G. Keramidas, G. W. Kamhlott, and A. K. Sinha, Gallium migration through contact metalizations on GaP, J. Electrochem. Soc. 122, 434–436 (1975).CrossRefGoogle Scholar
  202. 202.
    W. A. Brantley, B. Schwartz, V. G. Keramidas, A. K. Sinha, and G. W. Kammlott, Modified contact metalizations for GaP to provide barrier action against gallium migration, J. Electrochem. Soc. 122, 1152–1154 (1975).CrossRefGoogle Scholar
  203. 203.
    O. Ishihara, K. Nishitani, H. Sawano, and S. Mitsui, Ohmic contacts to P-type Gaas, Japan. J. Appl. Phys. 15, 1411–1412 (1976).ADSCrossRefGoogle Scholar
  204. 204.
    W. T. Anderson, Jr., A. Christou, and J. E. Davey, Development of ohmic contacts for Gaas devices using epitaxial Ge films, IEEE J. Solid-State Circuits SC-13, 430–435 (1978).Google Scholar
  205. 205.
    T. Kagawa and G. Motosugi, Algaassb piiotodiodes lattice matched to Gasb, Japan. J. Appl. Phys. 18, 1001–1002 (1979).ADSCrossRefGoogle Scholar
  206. 206.
    G. Jung, Binary Ag-In ohmic contacts to Gaas and Gasb, Electron Technol. 8, 63–84 (1975).Google Scholar
  207. 207.
    T. Kagawa and G. Motosugi, Algaassb avalanche photodiodes for 1.0–1.3 μm wavelength region, Japan. J Appl. Phys. 18, 2317–2318 (1979).CrossRefGoogle Scholar
  208. 208.
    V. Wrick and L. F. Eastman, private communication (1973).Google Scholar
  209. 209.
    H. T. Mills and H. L. Hartnagel, Ohmic contacts to Inp, Int. J. Electron. 46, 65–73 (1979).CrossRefGoogle Scholar
  210. 210.
    G. Weimann and W. Schlapp, Ohmic contacts on indium phosphide, Phys. Status Solidi A 50, K219–K223 (1978).ADSCrossRefGoogle Scholar
  211. 211.
    P. A. Barnes and R. S. Williams, Alloyed tin-gold ohmic contacts to n-type indium phosphide, Solid-State Electron. 24, 907–913 (1981).ADSCrossRefGoogle Scholar
  212. 212.
    Y. Nakano, S. Takahashi, and Y. Toyoshima, Contact resistance dependence on Ingaasp layers lattice matched to Inp, Japan. J. Appl. Phys. 19, L495–L497 (1980).ADSCrossRefGoogle Scholar
  213. 213.
    H. H. Wieder, A. R. Clawson, D. I. Elder, and D. A. Collins, Inversion mode insulated gate Ga0 47 In0 53 As field-effect transistors, IEEE Electron. Devices Lett. EDL-2, 73–74 (1981).Google Scholar
  214. 214.
    B.-L. Twu, A reproducible ohmic contact to n-type Gaas 0.6Po.4> Solid-State Electron. 22, 501–505 (1979).Google Scholar
  215. 215.
    C. A. Armiento, J. P. Donnelly, and S. H. Groves, p-n junction diodes in Inp and In1-xGaxAsyP1-y frabricated by beryllium-ion implantation, Appl. Phys. Lett. 34, 229–231 (1979).ADSCrossRefGoogle Scholar
  216. 216.
    O. Ishihara, K. Nishitani, H. Sawano, and S. Mitusi, Ohmic contacts to p-type Gaas, Japan. J. Appl. Phys. 15, 1411–1412 (1976).ADSCrossRefGoogle Scholar
  217. 217.
    K. L. Klohn and L. Wandinger, J. Electrochem. Soc. 116, 507 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Gary Y. Robinson
    • 1
  1. 1.Department of Electrical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations