Advertisement

Abstract

Central to the successful operation of almost all solid-state semiconductor devices is the need for reliable and well-controlled electrical contacts. However, in spite of several decades of research it is a surprising fact that our knowledge of the fundamental behavior of metal-semiconductor contacts on a microscopic level is still very far from complete. Over the past decade, though, considerable progress has been made and in this chapter we consider the current position relating to our understanding of the interaction of metals with atomically clean III-V semiconductor surfaces. Before dealing with metal-semiconductor interactions we consider in some detail the nature of selected atomically clean surfaces, concentrating in particular on the most thoroughly studied solid in the group, namely GaAs, and we also report recent work relating to the adsorption of selected gases onto these surfaces. Small amounts of an adsorbed gas on an otherwise clean surface can, in certain instances, severely influence the detailed interaction between a metal and semiconductor.

Keywords

Schottky Barrier Auger Electron Spectroscopy Semiconductor Surface GaAs Surface Photoemission Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.Ibach (ed.), Electron Spectroscopy for Surface Analysis, Springer-Verlag, Berlin (1977).Google Scholar
  2. 2.
    C. R. Brundle and A. D. Baker, Electron Spectroscopy, Vols. 1–3, Academic Press, New York (1978–1980).Google Scholar
  3. 3.
    M. Cardona and L. Ley, Photoemission in Solids I and II, Springer-Verlag, Berlin (1978 and 1979 ).Google Scholar
  4. 4.
    D. Haneman, in: Surface Physics of Phosphors and Semiconductors ( C. G. Scott and C. E. Reed, eds.) Chapter I, Academic Press, New York (1975).Google Scholar
  5. 5.
    R. H. Williams, Electron spectroscopy of surfaces, Contemp. Phys. 19, 389–413 (1978).ADSGoogle Scholar
  6. 6.
    C. R. Brundle, The application of electron spectroscopy to surface studies, J. Vac. Sci. Technol 11, 212–224 (1974).ADSGoogle Scholar
  7. 7.
    D. J. Chadi, Energy-minimization approach to the atomic geometry of semiconductor surfaces, Phys. Rev. Lett. 41, 1062–1065 (1978).ADSGoogle Scholar
  8. 8.
    J. R. Chelikowsky and M. L. Cohen, (110) Surface states in III-V and II-VI zinc-blende semiconductors, Phys. Rev. B 13, 826–834 (1976).ADSGoogle Scholar
  9. 9.
    J. R. Chelikowsky and M. L. Cohen, Self-consistent pseudopotential calculation for the relaxed (110) surface of Gaas, Phys. Rev. B 20, 4150–4159 (1979).ADSGoogle Scholar
  10. 10.
    J. D. Joannopoulos and M. L. Cohen, Intrinsic surface states of (110) surfaces of group IV and III-V semiconductors, Phys. Rev. B 10, 5075–5081 (1974).ADSGoogle Scholar
  11. 11.
    J. A. Appelbaum and D. R. Hamann, in: Theory of Chemisorption (J. R. Smith, ed.), Chapter 3, Springer-Verlag, Berlin (1980).Google Scholar
  12. 12.
    D. J. Chadi, (110) Surface atomic structures of covalent and ionic semiconductors, Phys. Rev. B 19, 2074–2082 (1979).ADSGoogle Scholar
  13. 13.
    E. J. Mele and J. D. Joannopoulos, Electronic states of unrelaxed and relaxed Gaas (110) surfaces, Phys. Rev. B 17, 1816–1827 (1978).ADSGoogle Scholar
  14. 14.
    E. J. Mele and J. D. Joannopoulos, Site of oxygen chemisorption on the Gaas(110) surface, Phys. Rev. Lett. 40, 341–346 (1978).ADSGoogle Scholar
  15. 15.
    D. J. Chadi, Atomic structure of Si(111) surfaces, Surf. Sci. 99, 1–12 (1980).Google Scholar
  16. 16.
    D. J. Chadi, Origins of (111) surface reconstructions of Si and Ge, J. Vac. Sci. Technol. 17, 989–992 (1980).ADSGoogle Scholar
  17. 17.
    W. Schottky, Z Phys. 113, 367 (1939).ADSMATHGoogle Scholar
  18. 18.
    J. Bardeen, Surface states and rectification at a metal-semiconductor contact, Phys. Rev. 71, 717–727 (1947).ADSGoogle Scholar
  19. 19.
    A. M. Cowley and S. M. Sze, Surface states and barrier heights of metal-semiconductor systems, J. Appl. Phys. 36, 3212–3220 (1965).ADSGoogle Scholar
  20. 20.
    A. M. Cowley, Depletion capacitance and diffusion potential of gallium phosphide, J. Appl. Phys. 37, 3024–3032 (1966).Google Scholar
  21. 21.
    E. H. Rhoderick, The physics of Schottky barriers, J. Phys. D 3, 1153–1167 (1970).ADSGoogle Scholar
  22. 22.
    E. H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).Google Scholar
  23. 23.
    V. Heine, Theory of surface states, Phys. Rev. A 138, 1689–1696 (1965).Google Scholar
  24. 24.
    Handbook of Physics, 50th Edition (Ed. R. C. Weast ), The Chemical Rubber Co., Cleveland, Ohio (1970).Google Scholar
  25. 25.
    S. G. Kurtin, T. C. McGill, and C. A. Mead, Fundamental transition in the electronic nature of solids, Phys. Rev. Lett. 22, 1433–1436 (1969).ADSGoogle Scholar
  26. 26.
    M. Schluter, Chemical trends in metal-semiconductor barrier heights, Phys. Rev. B 17, 5044–5047 (1978).Google Scholar
  27. 27.
    J. C. Inkson, Many-body effects at metal-semiconductor junctions, Phys. Rev. B 17, 5044–5047 (1978).Google Scholar
  28. 28.
    J. C. Ikson, Schottky barriers and plasmons, J. Vac. Sci. Technol. 11, 943–946 (1974).ADSGoogle Scholar
  29. 29.
    S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Ionicity and the theory of Schottky barriers, Phys. Rev. B 15, 2154–2162 (1977).ADSGoogle Scholar
  30. 30.
    H. E. Zang and M. Schluter, Studies of the Si(111) surface with various A1 overlays, Phys. Rev. B 18, 1923–1935 (1978).Google Scholar
  31. 31.
    J. R. Chelikowsky, Electronic structure of A1 chemisorbed on the Si(111) surface, Phys. Rev. B 16, 3618–3627 (1977).Google Scholar
  32. 32.
    A. Hiraki, M. A. Nicolet, and J. W. Mayer, Low-temperature migration of silicon in thin layers of gold and platinum, Appl. Phys. Lett. 18, 178–181 (1971).Google Scholar
  33. 33.
    I. Abbati, L. Braichovich, A. Franciosi, I. Lindau, P. R. Skeath, C. Y. Su, and W. E. Spicer, Photoemission investigation of the temperature effect on Si-Au interfaces, J. Vac. Sci. Technol. 17, 930–935 (1980).ADSGoogle Scholar
  34. 34.
    W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, Unified defect model and beyond, J. Vac. Sci. Technol. 17, 1019–1027 (1980).ADSGoogle Scholar
  35. 35.
    W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su, and P. W. Chye, Unified mechanism for Schottky-barrier formation and III-V oxide interface states, Phys. Rev. Lett. 44, 420–426 (1980).ADSGoogle Scholar
  36. 36.
    R. H. Williams, Surface defect effects on Schottky barriers, J. Vac. Sci. Technol. 18, 929–936 (1981).ADSGoogle Scholar
  37. 37.
    R. H. Williams, R. R. Varma, and V. Montgomery, Metal contacts on silicon and indium phosphide cleaved surfaces and the influence of intermediate absorbed layers. J. Vac. Sci. Technol 16, 1418 (1979).ADSGoogle Scholar
  38. 38.
    S. M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, New York (1969).Google Scholar
  39. 39.
    J. C. Phillips, Bonds and Bands in Semiconductors, Academic Press, New York (1973).Google Scholar
  40. 40.
    S. Y. Tong, A. R. Lubinsky, B. J. Mrstik, and M. A. Van Hove, Surface bond angle and bond lengths of rearranged As and Ga atoms on Gaas(110), Phys. Rev. B 17, 3303–3309 (1978).ADSGoogle Scholar
  41. 41.
    R. J. Mayer, C. B. Duke, A. Paton, A. Kahn, E. So, J. L. Yeh, and P. Mark, Dynamical calculations of low-energy electron diffraction intensities from Gaas(110): Influence of boundary conditions, exchange potential, lattice vibrations and multilayer reconstructions, Phys. Rev. B 19, 5194–5202 (1979).Google Scholar
  42. 42.
    J. J. Van Laar and J. J. Scheer, Influence of volume dope on Fermi level position at gallium arsenide surface, Surf. Sci. 8, 342–356 (1967).Google Scholar
  43. 43.
    A. Huijser and J. J. Van Laar, Work function variations of gallium arsenide cleaved, single crystals, Surf Sci. 52, 202–210 (1975).ADSGoogle Scholar
  44. 44.
    C. B. Duke, R. J. Meyer, and P. Mark, Trends in surface atomic geometries of compound semiconductors, J. Vac. Sci. Technol. 17, 971–977 (1980).ADSGoogle Scholar
  45. 45.
    R. J. Meyer, C. B. Duke, A. Paton, J. C. Tsand, J. L. Yeh, A. Kahn, and P. Mark, Dynamical analysis of low energy diffraction intensities from Inp(110), Phys. Rev. B 22, 6171–6183 (1980).Google Scholar
  46. 46.
    R. Z. Bachrach, in: Progress in Crystal Growth and Characterization, (P. Pamplin, ed.) Vol. 2. p. 115, Pergamon Press, Oxford (1979).Google Scholar
  47. 47.
    P. Drathen, E. Ranke, and K. Jacobi, composition and structure of differently prepared Gaas(100) surfaces studies by Leed and Aes, Surf. Sci. 77, L162–L166 (1978).Google Scholar
  48. 48.
    J. Massies, P. Devoldere, and N. T. Linh, Silver contacts on Gaas(001) and Inp(001), J. Vac. Sci. Technol. 15, 1353 (1978).ADSGoogle Scholar
  49. 49.
    J. H. Neave and B. A. Joyce, Structure and stoichiometry of (100) Gaas surfaces during molecular beam epitaxy, J. Cryst. Growth 44, 387–397 (1978).ADSGoogle Scholar
  50. 50.
    J. C. Phillips, Excitonic instabilities, vacancies, and reconstruction of covalent surfaces, Surf Sci. 40, 459–469 (1973).ADSGoogle Scholar
  51. 51.
    J. A. Appelbaum, G. A. Baraff, and D. R. Hamann, Gaas(100): Its surface effective charge, and reconstruction patterns, Phys. Rev. B 14, 1623–1632 (1976).Google Scholar
  52. 52.
    R. Ludeke and L. Ley, Physics of semiconductors, Inst. Phys. Conf Ser. 43, 1069 (1979).Google Scholar
  53. 53.
    R. F. C. Farrow, A. G. Cullis, A. J. Grant, and J. E. Pattison, Structural and electrical properties of epitaxial metal films grown on argon ion bombarded and annealed (001) Inp, J. Cryst. Growth 45, 292–301 (1978).ADSGoogle Scholar
  54. 54.
    C. R. Bayliss and D. L. Kirk, The compositional and structural changes that accompany the thermal annealing of (100) surfaces of Gaas, Inp and GaP in vacuum, J. Phys. D 9, 233–244 (1976).ADSGoogle Scholar
  55. 55.
    W. Ranke and K. Jacobi, Progr. Surf. Sci 10, 1 (1981).ADSGoogle Scholar
  56. 56.
    D. Haneman, Surface structures and properties of diamond-structure semiconductors, Phys. Rev. 121, 1093–1100 (1961).ADSGoogle Scholar
  57. 57.
    J. R. Chelikowsky and M. L. Cohen, Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14, 556–582 (1976).Google Scholar
  58. 58.
    L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalszyk, and D. A. Shirley, Total valence-band densities of states of III-V and II-VI compounds from X-ray photo-emission spectroscopy, Phys. Rev. B 9, 600–621 (1974).Google Scholar
  59. 59.
    F. C. Chiang, J. A. Knapp, D. E. Eastman, and M. Aono, Angle-resolved photoemission and valence band dispersion E(k) for Gaas: Direct vs. indirect models, Solid State Commun. 31, 917–920 (1979).ADSGoogle Scholar
  60. 60.
    J. H. Dinan, L. K. Galbraith, and T. E. Fischer, Electronic properties of clean cleaved (110) Gaas surfaces, Surf. Sci. 26, 587–604 (1971).Google Scholar
  61. 61.
    W. E. Spicer, P. W. Chye, P. E. Gregory, T. Sukegaw, and I. A. Babalola, Photoemission studies of surface and interface states on III-V compounds, J. Vac. Sci. Technol. 13, 233–240 (1976).ADSGoogle Scholar
  62. 62.
    D. E. Eastman and W. D. Grobman, Photoemission densities of intrinsic surface states of Si, Ge, and Gaas, Phys. Rev. Lett. 28, 1378–1381 (1972).ADSGoogle Scholar
  63. 63.
    A. Huijser and J. Van Laar, Work function variations of gallium arsenide cleaved single crystals, Surf. Sci. 52, 202–210 (1975).ADSGoogle Scholar
  64. 64.
    A. Huijser, J. Van Laar, and T. L. Van Rooy, Electronic surface properties of UHV-cleaved III-V compounds, Surf. Sci. 62, 472–486 (1977).Google Scholar
  65. 65.
    P. Chiaradia, G. Chiarotti, I. Davoli, S. Nannarone, and P. Sassaroli, Physics of semiconductors, Inst. Phys. Conf. Ser. 43, 195 (1978).Google Scholar
  66. 66.
    P. Chiaradia, G. Chiarotti, F. Ciccacci, R. Momeo, S. Nannarone, P. Sasaroli, and S. Selci, Optical detection of surface states in Gaas (110) and GaP (110), Surf Sci. 99, 70–75 (1980).ADSGoogle Scholar
  67. 67.
    C. M. Bertoni, O. Bisi, C. Calandra, and F. Mangi, Physics of semiconductors, Inst. Phys. Conf. Ser. 43, 191 (1978).Google Scholar
  68. 68.
    J. A. Knapp and G. J. Lapeyre, Angle resolved photoemission studies of surface states on (110) Gaas, J. Vac. Sci. Technol. 13, 757–760 (1976).ADSGoogle Scholar
  69. 69.
    A. Huijser, J. Van Laar, and T. L. Van Rooy, Angular-resolved photoemission from Gaas (110) surfaces with adsorbed Al, Surf Sci. 102, 264–270 (1981).ADSGoogle Scholar
  70. 70.
    V. Montgomery, G. P. Srivastava, I. Sing, and R. H. Williams, The electronic structure of cleaved indium phosphide (110) surfaces: experiment and theory, J. Phys. C 16, 3627–3640 (1983).ADSGoogle Scholar
  71. 71.
    V. Dose, H. J. Gossmann, and D. Straub, Investigation of intrinsic unoccupied surface states at Gaas (110) by isochromat spectroscopy, Phys. Rev. Lett. 47, 608–610 (1981).ADSGoogle Scholar
  72. 72.
    R. S. Bauer, R. Z. Bachrach, S. A. Flodstrom, and J. C. McMenamin, Empty semiconductor surface states: Core-level photoyield studies, J. Vac. Sci. Technol. 14, 378–382 (1977).ADSGoogle Scholar
  73. 73.
    R. S. Bauer, Ionicity effects on compound semiconductor (110) surfaces, J. Vac. Sci. Technol. 14, 899–903 (1977).ADSGoogle Scholar
  74. 74.
    G. J. Lapeyre and J. Anderson, Evidence for a surface-state exciton on Gaas (110), Phys. Rev. Lett. 35, 117–120 (1975).ADSGoogle Scholar
  75. 75.
    R. E. Allen and J. D. Dow, Theory of Frenkel core excitons at surfaces, Phys. Rev. B 24, 911–914 (1981).Google Scholar
  76. 76.
    J. A. Appelbaum, G. A. Baraff, and D. R. Hamann, Theoretical study of the Gaas (100) surface, J. Vac. Sci. Technol. 13, 751–756 (1976).ADSGoogle Scholar
  77. 77.
    I. Ivanov, A. Mazur, and J. Pollmann, The ideal (111), (110) and (100) surfaces of Si, Ge and Gaas; A comparison of their electronic structure, Surf Sci. 92, 365–384 (1980).ADSGoogle Scholar
  78. 78.
    J. Pollmann and S. T. Pantelides, Scattering-theoretic approach to the electronic structure of semiconductor surfaces: The (100) surface of tetrahedral semiconductors and Si02, Phys. Rev. B 18, 5524–5544 (1978).Google Scholar
  79. 79.
    R. Ludeke and L. Esaki, Electron energy-loss spectroscopy of Gaas and Ge surfaces, Phys. Rev. Lett. 33, 653–656 (1974).ADSGoogle Scholar
  80. 80.
    J. Massies, P. Etienne, F. Dezaly, and N. T. Linh, Stoichiometry effects on surface properties of Gaas (100) grown in situ by MBE, Surf. Sci. 99, 121–131 (1980).Google Scholar
  81. 81.
    P. K. Larsen, J. H. Neave, and B. A. Joyce, Angle resolved photoemission from As-stable Gaas (001) surfaces prepared by MBE, J. Phys. C 14, 167–192 (1981).ADSGoogle Scholar
  82. 82.
    R. Ludeke and A. Koma, Selection-rule effects in electron-loss spectroscopy of Ge and Gaas surfaces, Phys. Rev. Lett. 34, 817–821 (1973).ADSGoogle Scholar
  83. 83.
    K. Jacobi, C. Von Muschwitz, and W. Ranke, Angular resolved UPS of surface states on Gaas (111) prepared by molecular beam epitaxy, Surf. Sci. 82, 270 (1979).Google Scholar
  84. 84.
    W. Gudat and D. E. Eastman, Electronic surface properties of III-V semiconductors: Excitonic effects, band bending effects and interactions with Au and O adsorbate layers, J. Vac. Sci. Technol. 13, 831–837 (1976).ADSGoogle Scholar
  85. 85.
    R. A. Street, R. H. Williams, and R. S. Bauer, Influence of the surface on photoluminescence from indium phosphide crystals, J. Vac. Sci. Technol. 17, 1001–1004 (1980).ADSGoogle Scholar
  86. 86.
    R. A. Street and R. H. Williams, The luminescence of defects introduced by mechanical damage of Inp, J. Appl. Phys. 52, 402–406 (1981).ADSGoogle Scholar
  87. 87.
    J. M. Palau, E. Testemale, A. Ismail, and L. Lassabatere, Silver Schottky diodes on Kelvin, Aes and Leed characterized (100) surfaces of Gaas cleaned by ion bombardment, Solid State Electron. 25, 285–294 (1982).ADSGoogle Scholar
  88. 88.
    J. Tsand, A. Kahn, and P. Mark, Comparison of Leed and Auger data from cleaved and sputtered-annealed Inp (110) surfaces, Surf. Sci. 97, 119–127 (1980).Google Scholar
  89. 89.
    R. F. C. Farrow, A. G. Cullis, A. J. Grant, and J. E. Pattison, Structural and electrical properties of epitaxial metal films grown on argon ion bombarded and annealed (001) Inp, Cryst. Growth 45, 292–301 (1978).Google Scholar
  90. 90.
    D. G. Welkie and M. G. Lagally, Correlation of short-range order and sputter dose in Gaas (110) using a vidicon-based Leed system, J. Vac. Sci. Technol. 16, 784–788 (1979).ADSGoogle Scholar
  91. 91.
    M. G. Lagally, T. M. Lu, and D. G. Welkie, Surface defects and thermodynamics of chemisorbed layers. J. Vac. Sci. Technol. 17, 223–230 (1980).ADSGoogle Scholar
  92. 92.
    M. Jaros, Deep levels in semiconductors, Adv. Phys. 29, 409–525 (1980).Google Scholar
  93. 93.
    S. T. Pantelides, The electronic structure of impurities and other point defects in semiconductors, Rev. Mod. Phys. 50, 797–858 (1978).ADSGoogle Scholar
  94. 94.
    G. A. Baraff, E. O. Kane, and M. Schluter, Silicon vacancy: A possible “Anderson negative-U” system, Phys. Rev. Lett. 43, 956–959 (1979).ADSGoogle Scholar
  95. 95.
    M. S. Daw and D. L. Smith, Vacancies near semiconductor surfaces, Phys. Rev. B 20, 5150–5156 (1979).Google Scholar
  96. 96.
    M. S. Daw and D. L. Smith, Surface vacancies in Inp and GaA1As, Appl. Phys. Lett. 36, 690–692 (1982).Google Scholar
  97. 97.
    M. S. Daw and D. L. Smith, Energy levels of semiconductor surface vacancies, J. Vac. Sci. Technol. 17, 1028–1031 (1980).ADSGoogle Scholar
  98. 98.
    M. S. Daw and D. L. Smith, Relation between the common anion rule and the defect model of Schottky barrier formation, Solid State Commun. 37, 205–208 (1981).ADSGoogle Scholar
  99. 99.
    R. E. Allen and J. D. Dow, Unified theory of point-defect electronic states, core excitions and intrinsic states at semiconductor surfaces, J. Vac. Sci. Technol. 19, 383–387 (1981).ADSGoogle Scholar
  100. 100.
    R. E. Allen and J. D. Dow, Role of surface antisite defects in the formation of Schottky barriers, Phys. Rev. B 25, 1423–1426 (1982).Google Scholar
  101. 101.
    G. P. Srivastava, Procceedings of the Conference on Semi-Insulating III-V Materials, Nottingham (1980).Google Scholar
  102. 102.
    M. Jaros, Deep levels in semiconductors, Adv. Phys. 29, 409–525 (1980).Google Scholar
  103. 103.
    A. J. Rosenberg, J. N. Butler, and A. A. Meena, Oxidation of intermetallic compounds, adsorption of oxygen on III-V compounds and germanium at 78°K, Surf Sci. 5, 1–16 (1966).ADSGoogle Scholar
  104. 104.
    R. Dorn, H. Luth, and G. J. Russell, Adsorption of oxygen on clean cleaved (110) gallium-arsenide surfaces, Phys. Rev. B 10, 5049–5956 (1974).Google Scholar
  105. 105.
    H. Luth and G. J. Russell, Electron loss spectroscopy of clean and oxygen covered Gaas (110) surfaces, Surf Sci. 45, 329–341 (1974).ADSGoogle Scholar
  106. 106.
    P. Mark and W. F. Creighton, The effects of surface index and atomic order on the Gaas-oxygen interaction, Thin Solid Films 56, 19–38 (1979).ADSGoogle Scholar
  107. 107.
    P. Pianetta, I. Lindau, C. M. Garner, and W. E. Spicer, Photoemission studies of the initial stages of oxidation of Gasb and Inp, Surf. Sci. 88, 439–460 (1979).Google Scholar
  108. 108.
    J. J. Barton, W. A. Goddard, and T. C. McGill, Reconstruction and oxidation of the Gaas (110) surface, J. Vac. Sci. Technol. 16, 1178–1185 (1979).ADSGoogle Scholar
  109. 109.
    P. Mark, S. C. Chang, W. F. Creighton, and B. W. Lee, A comparison of some important surface properties of elemental and tetrahedrally coordinated compound semiconductors, CRC Crit. Rev. Solid-State Sci. 5, 189–229 (1975).Google Scholar
  110. 110.
    P. Mark and W. F. Creighton, The effects of surface index and atomic order on the Gaas-oxygen interaction, Thin Solid Films 56, 19–38 (1979).ADSGoogle Scholar
  111. 111.
    D. W. Welkie and M. G. Lagally, Correlation of short-range order and sputter dose in Gaas (110) using a vidicon-based Leed system, J. Vac. Sci. Technol. 16, 784–788 (1979).ADSGoogle Scholar
  112. 112.
    A. Kahn, D. Katnani, and P. Mark, The Gaas (110)-oxygen interaction: A Leed analysis III, Surf. Sci. 94, 547–554 (1980).Google Scholar
  113. 113.
    A. Kahn, D. Katnani, P. Mark, C. Y. Su, I. Lindau, and W. E. Spicer, Order-disorder effects in Gaas (110)-oxygen interaction: A Leed-UPS analysis, Surf. Sci. 87, 325–332 (1979).Google Scholar
  114. 114.
    R. Ludeke, The oxidation of the Gaas (110) surface, Solid State Commun. 21, 815–818 (1977).ADSGoogle Scholar
  115. 115.
    J. Joannopoulos and E. J. Mele, Extrinsic surface states for oxygen chemisorbed on the Gaas (110) surface, J. Vac. Sci. Technol. 15, 1287–1289 (1978).ADSGoogle Scholar
  116. 116.
    J. Stohr, R. S. Bauer, J. C. McMenamin, L. I. Johansson, and S. Brennan, Surface EXAFS investigation of oxygen chemisorption on Gaas (110), J. Vac. Sci. Technol. 16, 1195–1199 (1979).ADSGoogle Scholar
  117. 117.
    C. R. Brundle and D. Seybold, Oxygen interaction with Gaas surfaces: An XPS/UPS study, J. Vac. Sci. Technol. 16, 1186–1190 (1979).ADSGoogle Scholar
  118. 118.
    I. Lindau, C. Y. Su, P. R. Skeath, and W. E. Spicer, Proceedings of the Fourth International Conference on Solid Surface, Cannes (1980), pp. 979–983.Google Scholar
  119. 119.
    W. E. Spicer, I. Lindau, P. Pianetta, P. W. Chye, and C. M. Garner, Fundamental studies of III-V surfaces and the (III-V)-oxide interface, Thin Solid Films 56, 1–13 (1979).ADSGoogle Scholar
  120. 120.
    R. H. Williams and I. T. McGovern, Surface characterization of indium phosphide, Surf. Sci. 51, 14–28 (1975).Google Scholar
  121. 121.
    V. Montgomery, Ph.D. thesis, The New University of Ulster (1982).Google Scholar
  122. 122.
    W. Monch and R. Enninghorst, Charge Transfer to oxygen chemisorbed on cleaved Gaas (110) surfaces, J. Vac. Sci. Technol. 17, 942–945 (1980).ADSGoogle Scholar
  123. 123.
    P. W. Chye, I. Lindau, P. Pianetta, C. M. Garner, C. Y. Su, and W. E. Spicer, Photoemission study of Au Schottky-barrier formation on Gasb, Gaas and Inp using synchrotron radiation, Phys. Rev. B 18, 5545–5559 (1978).Google Scholar
  124. 124.
    M. Liehr and H. Luth, Gas adsorption on cleaved Gaas (110) surfaces studied by surface photovoltage spectroscopy, J. Vac. Sci. Technol. 16, 1200–1206 (1979).ADSGoogle Scholar
  125. 125.
    C. D. Thault, G. M. Guichar, and C. A. Sebenne, Effects of low oxygen exposure on the electronic surface properties of Gaas (110), Surf. Sci. 80, 273–277 (1979).Google Scholar
  126. 126.
    S. C. Dahlberg, Effect of adsorbed gases and temperature on the photovoltage spectrum of Gaas, J. Vac. Sci. Technol. 13, 1056–1059 (1976).ADSGoogle Scholar
  127. 127.
    H. Iwasaki, Y. Mizokawa, R. Nishitani, and S. Nakamura, X-ray photoemission study of the initial oxidation of the cleaved (110) surfaces of GaP and Insb, Surf. Sci. 86, 811–818 (1979).Google Scholar
  128. 128.
    M. G. Dowsett and E. H. C. Parker, Study of low coverage adsorption of cleaved (110) Inp surfaces using SIMS, J. Vac. Sci. Technol. 16, 1207–1210 (1979).ADSGoogle Scholar
  129. 129.
    G. M. Guichard, C. A. Sebenne, and C. D. Thualt, Electronic surface states on cleaved GaP (110): Initial steps of the oxygen chemisorption, J. Vac. Sci. Technol. 16, 1212–1215 (1979).ADSGoogle Scholar
  130. 130.
    Y. Ohno, S. Nakamura, and T. Kuroda, FEM studies of oxygen and gold adsorption and field-desorption on Gaas and GaP surfaces, Surf Sci. 91, L7–L16 (1980).Google Scholar
  131. 131.
    E. W. Kreutz, E. Rickus, and N. Sotnik, Oxidation properties of Insb (110) surfaces, Surf Set. 68, 392–398 (1977).ADSGoogle Scholar
  132. 132.
    H. Iwasaki, Y. Mizokawa, R. Nishitani, and S. Nakamura, Effects of water vapor and oxygen excitation on oxidation of Gaas, GaP and Insb surfaces studied by X-ray photoemission spectroscopy, Japan. J. Appl. Phys. 18, 1525–1529 (1979).ADSGoogle Scholar
  133. 133.
    D. Norman and D. K. Skinner, J. Phys. D (Applied Phys.) 10, L151–154 (1977).ADSGoogle Scholar
  134. 134.
    P. E. Gregory and W. E. Spicer, Photoemission study of the adsorption of 02, CO and H2 on Gaas (110), Surf. Sci. 54, 229–258 (1976).Google Scholar
  135. 135.
    D. J. Miller and D. Haneman, Electron-paramagnetic-resonance study of clean and oxygen-exposed surfaces of Gaas, AlSb and other III-V compounds, Phys. Rev. B 3, 2918–2928 (1971).Google Scholar
  136. 136.
    A. E. Morgan, Ellipsometric studies of chemisorption on GaP (110) single crystals, Surf. Sci. 43, 150–172 (1974).Google Scholar
  137. 137.
    P. K. Larsen, N. V. Smith, M. Schlüter, H. H. Farrell, K. M. Ho, and M. L. Cohen, Surface energy bands and atomic position and Ci chemisorbed on cleaved Si (111), Phys. Rev. B 17, 2612–2619 (1978).Google Scholar
  138. 138.
    J. E. Rowe, G. Margaritondo, and S. B. Christman, Chlorine chemisorption on silicon and germanium surfaces: Photoemission polarization effects with synchrotron radiation, Phys. Rev. B 16, 1581–1589 (1977).Google Scholar
  139. 139.
    G. Margaritondo, J. E. Rowe, C. M. Bertoni, C. Calandra, and F. Mangi, Chemisorption geometry on cleaved III-V surfaces: Ci and Gaas, Gasb, and Insb, Phys. Rev. B 20, 1538–1545 (1979).Google Scholar
  140. 140.
    V. Montgomery, R. H. Williams, and R. R. Varma, The interaction of chlorine with indium phosphide surfaces, J. Phys. C 11, 1989–2000 (1978).ADSGoogle Scholar
  141. 141.
    K. Jacobi, G. Steinert, and W. Ranke, Iodine etching of the Gaas(111) As surface studied by Leed, Aes, and mass spectroscopy, Surf. Sci. 57, 571–579 (1976).Google Scholar
  142. 142.
    D. D. Pretzer and H. D. Hagstrum, Ion neutralization studies of the (111), (111) and (110) surfaces of Gaas, Surf Sci. 4, 265–285 (1966).ADSGoogle Scholar
  143. 143.
    A. A. Morgan and W. J. M. Van Velzen, Chemisorption of gallium phosphide surfaces, Surf. Sci. 39, 255–259 (1973).Google Scholar
  144. 144.
    See also Ref. 134.Google Scholar
  145. 145.
    V. Montgomery and R. H. Williams, The adsorption of water on Inp and its influence on Schottky Barrier formation, J. Phys. C 15, 5887–5897 (1982).ADSGoogle Scholar
  146. 146.
    F. Mangi, C. M. Bertoni, C. Calandra, and E. Molinari, Theoretical investigation of hydrogen chemisorption on Ga-containing III-V compounds, J. Vac. Sci. Technol. 21, 371–374 (1982).ADSGoogle Scholar
  147. 147.
    M. Büchel and H. Luth, Adsorption of water and methanol on Gaas (110) surfaces studied by ultraviolet photoemission, Surf Sci. 87, 285–294 (1979).Google Scholar
  148. 148.
    G. J. Hughes, T. P. Humphreys, V. Montgomery, and R. H. Williams, The influence of adlayers on Schottky barrier formation; The adsorption of H2S and H2O on indium phosphide, Vacuum 31, 10–12 (1981).Google Scholar
  149. 149.
    V. Montgomery and R. H. Williams, The adsorption of water on Inp and its influence on Schottky barrier formation, J. Phys. C 15, 5887–5897 (1982).ADSGoogle Scholar
  150. 150.
    J. Massies, F. Dezaly, and N. T. Linh, Effects of H2S adsorption on Gaas (100) grown in situ by MBE, J. Vac. Sci. TechnoL 17, 1134–1140 (1980).ADSGoogle Scholar
  151. 151.
    V. Montgomery, R. H. Williams, and G. P. Srivastava, The influence of adsorbed layers in controlling Schottky barriers, J. Phys. C 14, L191–L194 (1981).ADSGoogle Scholar
  152. 152.
    G. Ottaviani and J. W. Mayer, in: Reliability and Degradation (M. J. Howes and D. V. Morgan, eds.), Chapter 2, Wiley, New York (1981).Google Scholar
  153. 153.
    K. N. Tu and S. S. Lau, in: Thin Films—Interdiffusion and Reactions (J. M. Poate, K. N. Tu, and J. W. Mayer, eds.), Chapter 5, Wiley, New York (1978).Google Scholar
  154. 154.
    K. N. Tu and S. S. Lau, Selective growth of metal-rich silicide of near-noble metals, Appl. Phys. Lett. 27, 221–224 (1975).Google Scholar
  155. 155.
    H. B. Kim, A. F. Lovas, G. G. Sweeney, and T. M. S. Heng, Inst, of Phys. Conf. Ser. 336, 145 (1977).Google Scholar
  156. 156.
    J. W. Steeds, private communcation.Google Scholar
  157. 157.
    A. McKinley, G. J. Hughes, and R. H. Williams, Cleaved surfaces of indium phosphide and their interfaces with metal electrodes, J. Phys. C 10, 4545–4557 (1977).ADSGoogle Scholar
  158. 158.
    A. McKinley, A. W. Parke, and R. H. Williams, Silver overlayers on (110) indium phosphide: Film growth and Schottky barrier formation. J. Phys. C 13, 6723–6736 (1980).ADSGoogle Scholar
  159. 159.
    B. Tuck, Introduction to Diffusion on Semiconductors, IEEE Monograph Series No. 16, Peregrinus (1974).Google Scholar
  160. 160.
    D. V. Morgan in: Reliability and Degradation (M. J. Howes and D. V. Morgan, eds.), Chapter 3, Wiley, New York (1981).Google Scholar
  161. 161.
    A. K. Sinha and J. M. Poate, in: Thin films, interdiffusion and reactions ( J. M. Poate, K. N. Tu, and J. W. Mayer, eds.), pp. 407–432, Wiley, New York (1978).Google Scholar
  162. 162.
    J. W. Matthews, Proceedings of the Fourth International Vacuum Congress (1968), p. 479.Google Scholar
  163. 163.
    J. C. Phillips, in: Thin Films, Interdiffusion and Reactions ( J. M. Poate, K. N. Tu, and J. W. Mayer, eds.), Wiley, New York (1978), pp. 57–67.Google Scholar
  164. 164.
    R. Kern, G. Lelay, and J. J. Metois, Current Topics in Materials Science, Vol. 3, Chapter 3, North-Holland, Amsterdam (1979).Google Scholar
  165. 165.
    M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).Google Scholar
  166. 166.
    F. C. Frank and J. H. Van der Merwe, The-dimensional dislocations. I. Static Theory, Proc. R. Soc. London, Ser. A 198, 205–215 (1949).ADSMATHGoogle Scholar
  167. 167.
    J. N. Stranski and L. Krastanov, Ber. Akad. Wiss. Wien. 146, 797 (1938).Google Scholar
  168. 168.
    L. Buene, Interdiffusion and phase formation at room temperature in evaporated gold-tin films, Thin Solid Films 47, 159–166 (1977).ADSGoogle Scholar
  169. 169.
    V. Simic and Z. Marinkovic, Room temperature interactions in Ag-metal thin film couples, Thin Solid Films 61, 149–160 (1979).ADSGoogle Scholar
  170. 170.
    V. Simic and Z. Marinkovic, Thin film interdiffusion of Au and In at room temperature, Thin Solid Films 41, 57–61 (1977).ADSGoogle Scholar
  171. 171.
    J. A. Venables, J. Derrien, and A. P. Janssen, Direct observation of the nucleation and growth modes of Ag/Si(l 11), Surf. Sci. 95, 411–430 (1980).Google Scholar
  172. 172.
    J. J. Scheer and J. Van Laar, Gaas-Cs: A new type of photoemitter, Solid State Commun. 3, 189–193 (1965).ADSGoogle Scholar
  173. 173.
    R. F. Steinberg, Photoemission from Gaas thin films, Appl. Phys. Lett. 12, 63–65 (1968).Google Scholar
  174. 174.
    A. J. Van Bommel and J. E. Crombeen, Leed, Auger electron spectroscopy (Aes) and photoemission studies of the cesium covered Gaas(110) surface, Surf. Sci. 45, 308–313 (1974).Google Scholar
  175. 175.
    A. J. Van Bommel and J. E. Crombeen, Leed, Auger electron spectroscopy (Aes) and photoemission studies of the adsorption of cesium on the epitaxially grown Gaas(110) surface, Surf. Sci. 57, 109–117 (1976).Google Scholar
  176. 176.
    A. J. Van Bommel and J. E. Crombeen, The GaP(001) surface and the adsorption of Cs, Surf. Sci. 76, 499–408 (1978).Google Scholar
  177. 177.
    A. J. Van Bommel and J. E. Crombeen, The adsorption and desorption of Cs on GaP and Gasb(001), (110), (111) and (TTT) surfaces, studied by Leed, Aes and photo-emission, Surf. Sci. 93, 383–397 (1980).Google Scholar
  178. 178.
    A. J. Van Bommel, J. E. Crombeen, and T. G. J. Van Oirschot, Leed, Aes and photoemission measurements of epitaxially grown Gaas(001), (111)A and (111)B surfaces and their behavior upon Cs adsorption, Surf. Sci. 72, 95–108 (1978).Google Scholar
  179. 179.
    T. E. Fischer, Photoelectric emission and interband transitions of GaP, Phys. Rev. 147, 603–607 (1966).ADSGoogle Scholar
  180. 180.
    P. E. Viljoen, M. S. Jazzar, and T. E. Fischer, Electronic properties of clean and cesiated (110) surfaces of Gasb, Surf. Sci. 32, 506–518 (1972).Google Scholar
  181. 181.
    B. Goldstein and D. Szostak, Different bonding states of Cs and O on highly photo- emissive Gaas by flash-desorption experiments, Appl. Phys. Lett. 26, 111–113 (1975).Google Scholar
  182. 182.
    J. Derrien, F. Arnaud d’Avitaya, and M. Bienfait, Isobar, Low energy electron diffraction and loss spectroscopy measurements of cesium covered (110) gallium arsenide, Solid States Commun. 20, 557–560 (1976).ADSGoogle Scholar
  183. 183.
    J. Derrien and F. Arnaud d’Avitaya, Adsorption of cesium on gallium arsenide (110), Surf. Sci. 65, 668–686 (1977).Google Scholar
  184. 184.
    W. E. Spicer, I. Lindau, P. E. Gregory, C. M. Garner, P. Pianetta, and P. Chye, Synchrotron radiation studies of electronic structure and surface chemistry of Gaas, Gasb and Inp, J. Vac. Sci. Technol. 13, 780–785 (1976).ADSGoogle Scholar
  185. 185.
    J. J. Uebbing, R. L. Bell, Cesium-Gaas Schottky barrier height, Appl. Phys. Lett. 11, 357–358 (1967).Google Scholar
  186. 186.
    C. A. Mead, Metal-semiconductor surface barriers, Solid-State Electron. 9, 1023–1033 (1966).ADSGoogle Scholar
  187. 187.
    H. Clemens and W. Monch, CRC Crit. Rev. Solid-State Sci. 273–280 (October 1975).Google Scholar
  188. 188.
    P. W. Chye, I. A. Babola, T. Skukegawa, and W. E. Spicer, Photoemission studies of surface states and Schottky-barrier formation on Inp, Phys. Rev. B 13, 4439–4446 (1976).Google Scholar
  189. 189.
    T. C. McGill, Phenomenology of metal-semiconductor electrical barriers, J. Vac. Technol. 11, 935–942 (1974).ADSGoogle Scholar
  190. 190.
    W. Spitzer and C. A. Mead, Barrier heights on metal-semiconductor systems, J. Appl. Phys. 34, 3061–3069 (1963).ADSGoogle Scholar
  191. 191.
    H. J. Clemens, J. Von Wienskowski, and W. Monch, On the interaction of cesium with cleaved Gaas(110) and Ge(111) surfaces: Work function measurements and adsorption site model, Surf. Sci. 78, 648–666 (1978).Google Scholar
  192. 192.
    C. B. Duke, A. Paton, R. J. Meyer, L. J. Brillson, A. Kahn, D. Kanani, J. Carelli, J. L. Yeh, G. Margaritondo, and A. D. Katuani, Atomic geometry of Gaas(110)-p (1 x 1)-A1, Phys. Rev. Lett. 46, 440–443 (1981).ADSGoogle Scholar
  193. 193.
    P. Skeath, C. Y. Su, I. Lindau, and W. E. Spicer, Column III and V elements on Gaas(110): Bonding and adatom-adatom interaction, J. Vac. Sci. Technol. 17, 874–879 (1980).ADSGoogle Scholar
  194. 194.
    L. J. Brillson, R. Z. Bachrach, R. S. Bauer, and J. McMenamin, Chemically induced charge redistribution at Al-Gaas interfaces, Phys. Rev. Lett 42, 397–401 (1979).ADSGoogle Scholar
  195. 195.
    R. Z. Bachrach and R. S. Bauer, Surface reactions and interdiffusion, J. Vac. Sci. Technol. 16, 1149–1153 (1979).ADSGoogle Scholar
  196. 196.
    J. R. Chelikowsky, S. G. Louie, and M. L. Cohen, Surface states and metal overlayers on the (110) surface of Gaas, Solid State Commun. 20, 641–644 (1976).ADSGoogle Scholar
  197. 197.
    D. J. Chadi and R. Z. Bachrach, Chemisorption site geometry and interface electronic structure of Ga and A1 on Gaas(110), J. Vac. Sci. Technol. 16, 1159–1163 (1979).ADSGoogle Scholar
  198. 198.
    C. A. Swarts, J. J. Barton, W. A. Goddard, and T. C. McGill, Chemisorption of A1 and Ga on the Gaas(110) surface, J. Vac. Sci. Technol. 17, 869–873 (1980).ADSGoogle Scholar
  199. 199.
    J. R. Chelikowsky, D. J. Chadi, and M. L. Cohen, Electronic structure of the Al-Gaas(110) surface chemisorption system, Phys. Rev. B 23, 4013–4022 (1981).Google Scholar
  200. 200.
    A. Zunger, A1 on Gaas(110) interface: Possibility of adatom cluster formation, Phys. Rev. B 24, 4372–4391 (1981).Google Scholar
  201. 201.
    E. Mele and J. D. Joannopoulos, Surface-barrier formation for A1 chemisorbed on Gaas(110), Phys. Rev. Lett. 42, 1094–1097 (1979).ADSGoogle Scholar
  202. 202.
    E. Mele and J. D. Joannopoulos, Electronic structure of A1 chemisorbed on Gaas(110), J. Vac. Sci. Technol.. 16, 1154–1158 (1979).ADSGoogle Scholar
  203. 203.
    J. Ihm and J. D. Joannopoulos, Structural energies of A1 deposited on the Gaas(110) surface, Phys. Rev. Lett. 47, 679–682 (1981).ADSGoogle Scholar
  204. 204.
    J. Ihm and J. D. Joannopoulos, First-principles determination of the structure of the Al/Gaas(110) surface, J. Vac. Sci. Technol. 21, 340–343 (1982).ADSGoogle Scholar
  205. 205.
    A. Kahn, D. Katnani, J. Carelli, J. L. Yeh, C. B Duke, R. J. Meyer, and A. Paton, Leed intensity analysis of the structure of A1 on Gaas(110), J. Vac. Sci. Technol. 18, 792–796 (1981).ADSGoogle Scholar
  206. 206.
    R. Z. Bachrach, Metal-semiconductor surface and interface states on (110) Gaas, J. Vac. Sci. Technol. 15, 1340–1343 (1978).ADSGoogle Scholar
  207. 207.
    P. Skeath, I. Lindau, P. Pianetta, P. W. Chye, C. Y. Su, and W. E. Spicer, Photoemission study of the interaction of A1 with a Gaas(110) surface, J. Electron. Spectrosc. 17, 259–265 (1979).Google Scholar
  208. 208.
    A. Huijser, J. Van Laar, and T. L. Van Rooy, Angular-resolved photoemission from Gaas(110) surfaces with adsorbed Al, Surf. Sci. 102, 264–270 (1981).Google Scholar
  209. 209.
    R. Ludeke and G. Landgren, Interface behavior and crysta110graphic relationships of aluminum on Gaas(100) surfaces, J. Vac. Sci. Technol. 119, 667–673 (1981).ADSGoogle Scholar
  210. 210.
    R. H. Williams, A. McKinley, G. J. Hughes, V. Montgomery, and I. T. McGovern, Metal-GaSe and metal-Inp interfaces: Schottky barrier formation and interfacial reactions, J. Vac. Sci. Technol. 21, 594–598 (1982).ADSGoogle Scholar
  211. 211.
    J. Van Laar, A. Huijser, and T. L. Van Rooy, Adsorption of type III and V elements on Gaas(110), J. Vac. Sci. Technol. 16, 1164–1167 (1979).Google Scholar
  212. 212.
    P. W. Chye, I. Lindau, P. Pianetta, C. M. Garner, C. Y. Su, and W. E. Spicer, Photoemission study of Au Schottky-barrier formation on Gasb, Gaas and Inp using synchrotron radiation, Phys. Rev. B 18, 5545–5559 (1978).Google Scholar
  213. 213.
    R. S. Bauer, R. Z. Bachrach, G. V. Hansson, and P. Chiaradia, Dissociative surface reactions at Schottky and heterojunction interfaces with Alas and Gaas, J. Vac. Sci. Technol. 19, 674–680 (1981).ADSGoogle Scholar
  214. 214.
    G. Apai, S. T. Lee, and M. G. Mason, Valence band formation in small silver clusters, Solid State Commun. 37, 213–217 (1981).ADSGoogle Scholar
  215. 215.
    J. F. Hamilton and P. Logel, Nucleation and growth of Ag and Pd on amorphous carbon by vapor deposition, Thin Solid Films 16, 49–63 (1973).ADSGoogle Scholar
  216. 216.
    R. Ludeke, T. C. Chiang, and D. E. Eastman, Crystallographic relationships and interfacial properties of Ag on Gaas(100) surfaces, J. Vac. Sci. Technol. 21, 598–606 (1982).Google Scholar
  217. 217.
    A. Hiraki, S. Kim, W. Kammamura, and M. Iwami, Room-temperature interfacial reaction in Au-semiconductor systems, Appl. Phys. Lett. 13, 611–612 (1977).Google Scholar
  218. 218.
    A. Hiraki, S. Kim, W. Kammanura, and M. Iwami, Chemical effects in (LVV) Auger spectra of third-period elements (Al, Si, P, and S) dissolved in copper, Appl. Phys. Lett. 34, 194–195 (1979).Google Scholar
  219. 219.
    A. Hiraki, S. Kim, W. Kammanura, and M. Iwami, Dynamical observation of room temperature interfacial reaction in metal-semiconductor system by Auger electron spectroscopy, Surf. Sci. 86, 706–710 (1979).Google Scholar
  220. 220.
    J. R. Waldrop and R. W. Grant, Interface chemistry of metal-Gaas Schottky-barrier contacts, Appl. Phys. Lett. 34, 630–632 (1979).Google Scholar
  221. 221.
    I. Lindau, P. W. Chye, C. M. Garner, P. Pianetta, C. Y. Su, and W. E. Spicer, New Phenomena in Schottky barrier formation on III-V compounds, J. Vac. Sci. Technol. 15, 1332–1339 (1978).ADSGoogle Scholar
  222. 222.
    L. J. Brillson, C. F. Brucker, N. G. Stoffel, A. D. Katnani, and G. Margaritondo, Abruptness of semiconductor-metal interfaces, Phys. Rev. Lett. 46, 838–841 (1981).ADSGoogle Scholar
  223. 223.
    L. J. Brillson, C. F. Brucker, A. D. Katnani, N. G. Stoffel, and G. Margaritondo, Atomic and electronic structure of Inp-metal interfaces: A prototypical III-V compound semiconductor, J. Vac. Sci. Technol. 19, 661–666 (1981).ADSGoogle Scholar
  224. 224.
    R. H. Williams, Surface defects on semiconductors, Surf. Sci. 132, 122–142 (1983).Google Scholar
  225. 225.
    A. G. Cullis and R. F. C. Farrow, A study of the structure and properties of epitaxial silver deposited by atomic beam techniques on (001) Inp, Thin Solid Films 58, 197–202 (1974).ADSGoogle Scholar
  226. 226.
    S. Knight and C. Paola, in: Ohmic Contacts to Semiconductor (B. , ed. ), Electrochemical Society (1969), p. 2.Google Scholar
  227. 227.
    R. H. Williams, G. P. Srivastava, and I. T. McGovern, Photoelectron spectroscopy of solids and their surfaces, Rept. Progr. Phys. 43, 1357–1414 (1980).ADSGoogle Scholar
  228. 228.
    A. Amith and P. Mark, Schottky barriers on ordered and disordered surfaces of Gaas(110), J. Vac. Sci. Technol. 15, 1344–1352 (1978).ADSGoogle Scholar
  229. 229.
    C. M. Mead and W. Spitzer, Fermi level position at metal-semiconductor interfaces, Phys. Rev. 134, A713–A716 (1964).Google Scholar
  230. 230.
    J. M. Palau, E. Testemale, A. Ismail, and L. Lassebatere, Silver Schottky diodes on Kelvin, Aes and Leed characterized (100) surfaces of Gaas cleaned by ion bombardment, Solid State Electron. 25, 285–294 (1982).ADSGoogle Scholar
  231. 231.
    R. H. Williams, V. Montgomery, and R. R. Varma, Chemical effects in Schottky barrier formation, J. Phys. C 11, L735–L742 (1978).ADSGoogle Scholar
  232. 232.
    V. Montgomery, A. McKinley, and R. H. Williams, The influence of intermediate adsorbed layers on the metal contacts formed to indium phosphide crystals, Surf. Sci. 89, 635–652 (1979).Google Scholar
  233. 233.
    E. Hokelek and G. Y. Robinson, Schottky contacts on chemically etched p- and n-type indium phosphide, Appl. Phys. Lett. 40, 426–432 (1982).Google Scholar
  234. 234.
    J. O. McCaldin, T. C. McGill, and C. A. Mead, Correlation for III-V and II-VI semiconductors of the Au Schottky barrier energy with anion electronegativity, Phys. Rev. Lett. 36, 56–58 (1976).ADSGoogle Scholar
  235. 235.
    J. R. Chelikowsky, S. G. Louie, and M. L. Cohen, Surface states and metal overlayers on the (110) surface of Gaas, Solid State Commun. 20, 641–644 (1976).ADSGoogle Scholar
  236. 236.
    J. M. Andrews and J. C. Phillips, Chemical bonding and structure of metal-semiconductor interfaces, Phys. Rev. Lett. 35, 56–59 (1975).ADSGoogle Scholar
  237. 237.
    L. J. Brillson, Transition in Schottky barrier formation with chemical reactivity, Phys. Rev. Lett. 40, 260–263 (1978).ADSGoogle Scholar
  238. 238.
    A. D. Muckherjee, Reliability and Degradation (M. J. Howes and D. V. Morgan eds.), Chapter 1, Wiley, New York (1981).Google Scholar
  239. 239.
    J. M. Poate, K. N. Tu, and J. W. Mayer (eds.), Thin Films, Interdiffusion and Reactions, Wiley, New York (1978).Google Scholar
  240. 240.
    V. L. Rideout, A review of the theory, technology and application of metal-semiconductor rectifiers, Thin Solid Films 48, 261–291 (1978).ADSGoogle Scholar
  241. 241.
    R. H. Williams, A. McKinley, G. J. Hughes, and T. P. Humphreys, Metal contacts on semiconductors: The adsorption of Sb, Sn and Ga on Inp (110) cleaved surfaces, J. Vac. Sci. Technol. B 2 (3), 561–568 (1984).Google Scholar
  242. 242.
    J. L. Freeouf and J. M. Woodall, Schottky barriers: An effective work function model, Appl. Phys. Lett. 39, 727–729 (1981).Google Scholar
  243. 243.
    J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, Size dependence of “effective” barrier heights of mixed-phase contacts, J. Vac. Sci. Technol. 21, 570–573 (1982).ADSGoogle Scholar
  244. 244.
    J. L. Freeouf, Silicide interface stoichiometry, J. Vac. Sci. Technol. 18, 910–916 (1981).ADSGoogle Scholar
  245. 245.
    K. Kajiama, Y. Mizushima, and S. Sakata, Schottky barrier height of n-Inx GayAs diodes, Appl. Phys. Lett. 23, 458–459 (1973).Google Scholar
  246. 246.
    J. S. Best, The Schottky-barrier height of Au on n-GaAlas as a function of Alas content, Appl. Phys. Lett. 34, 522–524 (1979).Google Scholar
  247. 247.
    J. D. Levine, Schottky-barrier anomalies and interface states, J. Appl. Phys. 42, 3991–3999 (1971).ADSGoogle Scholar
  248. 248.
    J. D. Levine, Power law reverse current-voltage characteristic in Schottky barrier, Solid-State Electron. 17, 1083–1086 (1974).ADSGoogle Scholar
  249. 249.
    C. R. Crowell, The physical significance of the T0 anomalies in Schottky barriers, Solid-State Electron. 20, 171–175 (1977).ADSGoogle Scholar
  250. 250.
    W. Monch and H. Gant, Chemisorption-induced defects on Gaas(110) surfaces, Phys. Rev. Lett. 48, 512–515 (1982).ADSGoogle Scholar
  251. 251.
    R. W. Grant, J. R. Waldrop, S. P. Kowalczyk, and E. A. Kraut, Correlation of Gaas surface chemistry and interface Fermi-level position: A simple defect model interpretation, J. Vac. Sci. Technnol. 19, 477–480 (1981).ADSGoogle Scholar
  252. 252.
    J. Massies and N. T. Linh, J. Cryst. Growth 56, 25 (1982).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. H. Williams
    • 1
  1. 1.Physics DepartmentUniversity CollegeCardiffUK

Personalised recommendations