Advertisement

Nonmammalian Psychosexual Differentiation

  • Elizabeth Adkins-Regan
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 7)

Abstract

Nonmammalian vertebrates have traditionally played a significant role in the study of morphological sexual differentiation, but they have been relatively neglected in the study of behavioral sexual differentiation (psychosexual differentiation). Several recent developments, however, have sparked new interest in other vertebrate classes. These include the discovery of gross anatomical sexual dimorphism in songbird brains (Nottebohm and Arnold, 1976), the possibility of major species or class differences in the pattern of psychosexual differentiation (Adkins-Regan, 1981), and a generally greater tendency to view reproductive physiology and behavior as part of overall reproductive strategies to be explained within an evolutionary/ecological context. It is also becoming apparent that certain nonmammalian species are potentially very valuable as models for studying the role of hormones in brain and behavioral development, in part because they lack some problems inherent in mammals. For example, most birds, fish, and amphibians have no external copulatory organs, and so the effects of hormones administered early in life on adult copulatory behavior are not confounded by alterations in copulatory organs. In egg-laying species, there is no maternal gestation to complicate treatments given during embryonic life. Many nonmammalian species are sufficiently independent of the parents at birth or hatching so that they can be easily reared without parents; thus, a confound is avoided wherein the parents behave differently toward hormone-treated and control offspring (as has been shown to happen in rats, C. L. Moore, 1982).

Keywords

Zebra Finch Japanese Quail Testosterone Propionate Estradiol Benzoate Testosterone Propionate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, E. K. Functional castration of the female Japanese quail. Physiology and Behavior, 1973, 10, 619.Google Scholar
  2. Adkins, E. K. Electrical recording of copulation in quail. Physiology and Behavior, 1974, 13, 475.Google Scholar
  3. Adkins, E. K. Hormonal basis of sexual differentiation in the Japanese quail. Journal of Comparative and Physiological Psychology, 1975, 89, 61.PubMedGoogle Scholar
  4. Adkins, E. K. Embryonic exposure to an antiestrogen masculinizes behavior of female quail. Physiology and Behavior, 1976, 17, 357.PubMedGoogle Scholar
  5. Adkins, E. K. Effect of embryonic treatment with estradiol or testosterone on sexual differentiation of the quail brain: Critical period and dose-response relationships. Neuroendocrinology,1979, 29,178185.Google Scholar
  6. Adkins, E. K., and Adler, N. T. Hormonal control of behavior in the Japanese quail. Journal of Comparative and Physiological Psychology, 1972, 81, 27.PubMedGoogle Scholar
  7. Adkins, E. K., and Nock, B. Behavioral responses to sex steroids of gonadectomized and sexually regressed quail. Journal of Endocrinology, 1976, 68, 49.PubMedGoogle Scholar
  8. Adkins, E. K., and Pniewski, E. E. Control of reproductive behavior by sex steroids in male quail. Journal of Comparative and Physiological Psychology, 1978, 92, 1169–1178.Google Scholar
  9. Adkins, E. K., and Schlesinger, L. Androgens and the social behavior of male and female lizards, Anolis carolinensis. Hormones and Behavior, 1979, 13, 139–152.Google Scholar
  10. Adkins-Regan, E. Early organizational effects of hormones: An evolutionary perspective. In N. T. Adler (Ed.), Neuorendocrinology of Reproduction. New York: Plenum Press, 1981.Google Scholar
  11. Adkins-Regan, E. Sexual differentiation of behavior in the zebra finch. Paper presented at the Conference on Reproductive Behavior, Pittsburgh, June 1984.Google Scholar
  12. Adkins-Regan, E. Exposure of embryos to an aromatization inhibitor increases copulatory behaviour of male quail. Behavioural Processes,in press.Google Scholar
  13. Adkins-Regan, E., Pickett, P., and Koutnik, D. Sexual differentiation in quail: Conversion of androgen to estrogen mediates testosterone-induced demasculinization of copulation but not other male characteristics. Hormones and Behavior, 1982, 16, 259–278.PubMedGoogle Scholar
  14. Allee, W. C., and Collias, N. The influence of estradiol on the social organization of flocks of hens. Endocrinology, 1940, 27, 87.Google Scholar
  15. Armstrong, C. N., and Marshall, A. J. (Eds.). Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.Google Scholar
  16. Arnold, A. P. Behavioral Effects of Androgen in Zebra Finches (Poephila guttata) and a Search for Its Sites of Action. Ph.D. dissertation, Rockefeller University, 1974.Google Scholar
  17. Arnold, A. P. The effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). Journal of Experimental Zoology, 1975a, 191, 309–325.PubMedGoogle Scholar
  18. Arnold, A. P. The effects of castration on song development in zebra finches (Poephila guttata). Journal of Experimental Zoology, 191, 1975b, 261–277.PubMedGoogle Scholar
  19. Arnold, A. P., and Saltiel, A. Sexual difference in pattern of hormone accumulation in the brain of a songbird. Science, 1979, 205, 702–704.PubMedGoogle Scholar
  20. Aronson, L. R. Reproductive and parental behavior. In M. E. Brown (Ed.), Physiology of Fishes, Vol. 2. New York: Academic Press, 1957.Google Scholar
  21. Atz, J. W. Intersexuality in fishes. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.Google Scholar
  22. Baggerman, B. Hormonal control of reproductive and parental behavior in fishes. In E. J. W. Barrington and C. B. Jorgensen (Eds.), Perspectives in Endocrinology: Hormones in the Lives of Lower Vertebrates. London: Academic Press, 1968.Google Scholar
  23. Balthazart, J., and Schumacher, M. Testosterone metabolism and sexual differentiation in quail. In J. Balthazart, E. Pröve, and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.Google Scholar
  24. Barfield, R. J. Activation of copulatory behavior by androgen implanted into the preoptic area of the male fowl. Hormones and Behavior, 1969, 1, 37.Google Scholar
  25. Beach, F. A. Hormonal factors controlling the differentiation, development, and display of copulatory behavior in the ramstergig and related species. In E. Tobach, L. R. Aronson, and E. Shaw (Eds.), The Biopsychology of Development. New York: Academic Press, 1971.Google Scholar
  26. Beach, F. A., and Inman, N. G. Effects of castration and androgen replacement on mating in male quail. Proceedings of the National Academy of Sciences, 1965, 54, 1426.Google Scholar
  27. Beatty, R. A. Chromosome deviations and sex in vertebrates. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.Google Scholar
  28. Beatty, R. A. Genetic basis for the determination of sex. Philosophical Transactions of the Royal Society (London) B, 1970, 259, 3.Google Scholar
  29. Becker, P., Roland, H., and Reinboth, R. An unusual approach to experimental sex inversion in the teleost fish, Betta and Macropodus. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.Google Scholar
  30. Benoff, F. H. Testosterone-induced precocious sexual behavior in chickens differing in adult mating frequency. Behavioral Processes, 1979, 4, 35.Google Scholar
  31. Bull, J. J., and Vogt, R. C. Temperature-sensitive periods of sex determination in emydid turtles. Journal of Experimental Zoology, 1981, 218, 435.PubMedGoogle Scholar
  32. Burns, R. K. Role of hormones in the differentiation of sex. In W. C. Young (Ed.), Sex and Internal Secretions. Baltimore: Williams & Wilkins, 1961.Google Scholar
  33. Chan, S. T. H. Natural sex reversal in vertebrates. Philosophical Transactions of the Royal Society (London) B, 1970, 259, 59.Google Scholar
  34. Chan, S. T. H., O, W.-S., and Hui, S. W. B. The gonadal and adenohypophysial functions of natural sex reversal. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.Google Scholar
  35. Charnov, E. L., and Bull, J. When is sex environmentally determined? Nature, 1977, 266, 828.PubMedGoogle Scholar
  36. Choat, J. H., and Robertson, D. R. Protogynous hermaphroditism in fishes of the family Scaridae. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.Google Scholar
  37. Clemens, H. P., and Inslee, T. The production of unisexual broods by Tilapia mossambica sex-reversed with methyl testosterone. Transactions of the American Fish Society, 1968, 97, 18.Google Scholar
  38. Clemens, L. G. Neurohormonal control of male sexual behavior. In W. Montagna and W. A. Sadler (Eds.), Reproductive Behavior. New York: Plenum Press, 1974.Google Scholar
  39. Crawford, W. C., and Glick, B. The function of the preoptic, mammilaris lateralis and ruber nuclei in normal and sexually inactive male chickens. Physiology and Behavior, 1975, 15, 171.PubMedGoogle Scholar
  40. Crews, D. Endocrine control of reptilian reproductive behavior. In C. Beyer (Ed.), Endocrine Control of Sexual Behavior. New York: Raven, 1979.Google Scholar
  41. Crews, D. Control of male sexual behaviour in the Canadian red-sided garter snake. In J. Balthazart, E. Pröve, and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.Google Scholar
  42. Crews, D., Gustafson, J. E., and Tokarz, R. Psychobiology of parthenogenesis in reptiles. In R. Huey, E. Pianka, and T. Schoener (Eds.), Lizard Ecology. Cambridge: Harvard University Press, 1982.Google Scholar
  43. Dantschakoff, V. Über chemische Werkzeuge bei der Realisation normal bestimmter embryonaler geschlechtlicher Histogenese bei Reptilien. Archiv für Entwickungsmechanik der Organismen, 1938, 138, 465.Google Scholar
  44. Davies, S. J. J. F. The timing of breeding by the zebra finch at Mileura, Western Australia. Ibis, 1978, 119, 369–372.Google Scholar
  45. Davis, D. E., and Domm, L. V. The influence of hormones on the sexual behavbior of domestic fowl. In Essays in Biology. Berkeley: University of California Press, 1943Google Scholar
  46. Diakow, C., and Nemiroff, A. Vasotocin, prostaglandin, and female reproductive behavior in the frog, Rana pipiens. Hormones and Behavior, 1981, 15, 86.Google Scholar
  47. Dodd, J. M. Genetic and environmental aspects of sex determination in cold-blooded vertebrates. Memoirs of the Society for Endocrinology, 1960, 7, 17.Google Scholar
  48. Domm, L. V. Intersexuality in adult Brown Leghorn males as a result of estrogenic treatment during early embryonic life. Proceedings of the Society for Experimental Biology and Medicine, 1939, 42, 310.Google Scholar
  49. Domm, L. V., and Davis D. E. The effect of sex hormones on sexual behavior of domestic fowl. Anaregan Comical Record, 1942, 82, 493.Google Scholar
  50. Dufaure, J.-P. Recherches descriptives et expérimentales sur les modalités et facteurs du développement de l’appareil génital chez le lézard vivipare (Lacerta vivipara Jacquin). Archives d’Anatomie Microscopique et de Morphologie Experimentale, 1966, 55, 437.Google Scholar
  51. Dzwillo, M. Über künstliche Erzeugung funktioneller männlicher und weiblicher Genotyps bei Lebistes reticulatus. Biologisches Zentralblatt 1962, 81, 575.Google Scholar
  52. Engel, W., Klemme, B., and Schmid, M. H-Y antigen and sex determination in turtles. Differentiation, 1981, 20, 152.Google Scholar
  53. Fineman, R., Hamilton, J., Chase, G., and Bolling, D. Length, weight and secondary sex character development in male and female phenotypes in three sex chromosomal genotypes (XX, XY, YY) in the killifish, Oryzias Wipes, Journal of Experimental Zoology, 1974, 189, 227.PubMedGoogle Scholar
  54. Fischer, E. A. The relationship between mating system and simultaneous hermaphroditism in the coral reef fish, Hypoplectrus nigricans (Serranidae), Animal Behaviour, 1980, 28, 620.Google Scholar
  55. Fishelson, L. Ecology and physiology of sex reversal in Anthias squamipinnis (Peters), (Teleostei: Anthiidae). In R. Reinboth (Ed.), Intersexuality in the animal kingdom. New York: Springer-Verlag, 1975.Google Scholar
  56. Foote, C. L. Intersexuality in amphibians. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.Google Scholar
  57. Forbes, T. R. Intersexuality in reptiles. In C. N. Armstrong and A. J. Marshall(Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.Google Scholar
  58. Fricke, H., and Fricke, S. Monogamy and sex change by aggressive dominance in a coral reef fish. Nature, 1977, 266, 830.PubMedGoogle Scholar
  59. Gallien, L. G. The action of sex hormones on the development of sex in amphibia. Memoirs of the Society for Endocrinology, 1955, 4, 188.Google Scholar
  60. Gallien, L. G. Genetic control of sexual differentiation in vertebrates. In R. L. DeHaan and H. Ursprung (Eds.), Organogenesis. New York: Holt, Rinehart and Winston, 1965.Google Scholar
  61. Gallien, L. G. Developments in sexual organogenesis. In M. Abercrombie and J. Brachet (Eds.), Advances in Morphogenesis, Vol. 6. New York: Academic Press, 1967.Google Scholar
  62. Gasc, J.-M., and Thibier, M. Plasma testosterone concentration in control and testosterone-treated chick embryos. Experientia, 1979, 35, 1411–1412.PubMedGoogle Scholar
  63. Ghiselin, M. T. The Economy of Nature and the Evolution of Sex. Berkeley: University of California Press, 1974.Google Scholar
  64. Glick, B. The reproductive performance of birds hatched from eggs dipped in male hormone solutions. Poultry Science, 1961, 40, 1408.Google Scholar
  65. Glick, B. Embryonic exposure to testosterone propionate will adversely influence future mating behavior in male chickens, Federation Proceedings, 1965, 24, 700.Google Scholar
  66. Goodale, H. D. Castration in relation to the secondary sexual characters in Brown Leghorns. American Naturalist, 1913, 34, 127.Google Scholar
  67. Goodale, H. D. Feminized male birds. Genetics, 1918, 3, 276.PubMedGoogle Scholar
  68. Gorman, G. C. The chromosomes of the reptilia: A cytotaxonomic interpretation. In A. B. Chiarelli and E. Capanna (Eds.), Cytotaxonomy and Vertebrate Evolution. London: Academic Press, 1973.Google Scholar
  69. Goy, R. W., and McEwen, B. S. Sexual Differentiation of the Brain. Cambridge, Mass.: M.I.T. Press, 1980.Google Scholar
  70. Guhl, A. M. Heterosexual dominance and mating behavior in chickens. Behaviour, 1949, 2, 106.Google Scholar
  71. Guhl, A. M., and Fischer, C. L. The behavior of chickens. In E. S. E. Hafez (Ed.), The Behavior of Domestic Animals. Baltimore: Williams & Wilkins, 1969.Google Scholar
  72. Gurney, M. E. Hormonal control of cell form and number in the zebra finch song system. Journal of Neuroscience, 1981, 1, 658–673.PubMedGoogle Scholar
  73. Gurney, M. E. Behavioral correlates of sexual differentiation in the zebra finch song system. Brain Research, 1982, 231, 153.PubMedGoogle Scholar
  74. Gurney, M. E., and Konishi, M. Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science, 1980, 208, 1380–1383.PubMedGoogle Scholar
  75. Hackman, E., and Reinboth, R. Delimitation of the critical stage of hormone-influenced sex differentiation in Hemihaplochromis multicolor (Hilgendorf) (Cichlidae). General and Comparative Endocrinology, 1974, 22, 42.Google Scholar
  76. Harding, C. F. Hormonal specificity and activation of social behaviour in the male zebra finch. In J. Balthazart, E. Pröve, and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.Google Scholar
  77. Harrington, R. W. How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia, 1971, 389.Google Scholar
  78. Haynes, R. L., and Glick, B. Hypothalamic control of sexual behavior in the chicken. Poultry Science, 1974, 53, 27.PubMedGoogle Scholar
  79. Hoar, W. S. Reproductive behavior of fish. General and Comparative Endocrinology, 1962, Suppl. 1, 206.Google Scholar
  80. Hutchison, R. E. Hormonal differentiation of sexual behavior in Japanese quail. Hormones and Behavior, 1978, 11, 363–387.PubMedGoogle Scholar
  81. Idler, D. R., Reinboth, R., Walsh, J. M., and Truscott, B. A comparison of 11-hydroxytestosterone and 11-ketotestosterone in blood of ambisexual and gonochoristic teleosts. General and Comparative Endocrinology, 1976, 30, 517.PubMedGoogle Scholar
  82. Jenni, D. A. Evolution of polyandry in birds. American Zoology, 1974, 14, 129.Google Scholar
  83. Jost, A. Hormonal influences in the sex development of bird and mammalian embryos. Memoirs of the Society for Endocrinology, 1960, 7, 49.Google Scholar
  84. Jost, A. Basic sexual trends in the development of vertebrates. In Sex, Hormones and Behavior. (Ciba Foundation Symposium No. 62 ) Amsterdam. Excerpta Medica, 1979.Google Scholar
  85. Kaufman, L. Experiments on sex modification in cocks during their embryonal development. World’s Poultry Science Journal, 1956, 12, 41.Google Scholar
  86. Kelley, D. B., and Pfaff, D. W. Hormone effects on male sex behavior in adult South African clawed frogs, Xenopus laevis. Hormones and Behavior, 1976, 7, 159.Google Scholar
  87. Kilgore, L., and Glick, B. Testosterone’s influence on brain enzymes in the developing chick. Poultry Science, 1970, 49, 16.PubMedGoogle Scholar
  88. Konishi, M., and Gurney, M. E. Sexual differentiation of brain and behaviour. Trends in Neurosciences, 1982, 5, 20–23.Google Scholar
  89. Kramer, D. L. The role of androgens in the parental behavior of the blue gourami, Trichogaster trichopterus (Pisces, Belontiidae). Animal Behaviour, 1972, 20, 798.PubMedGoogle Scholar
  90. Liem, K. F. Sex reversal as a natural process in the synbranchiform fish Monopterus albus. Copeia, 1963, 303.Google Scholar
  91. Liem, K. F. Geographical and taxonomic variation in the pattern of natural sex reversal in the teleost fish order Synbranchiformes. Journal of Zoology London, 1968, 156, 225.Google Scholar
  92. Liley, N. R. Hormones and reproductive behavior in fishes. In W. S. Hoar and D. J. Randall (Eds.), Fish Physiology. New York: Academic Press, 1969.Google Scholar
  93. Liley, N. R. Effects of estrogens and other steroids on the sexual behavior of the female guppy, Poecilia reticulata. General and Comparative Endocrinology, 1972, Suppl. 3, 542.Google Scholar
  94. Lisk, R. D. Inhibitory centers in sexual behavior in the male rat. Science, 1966, 152, 669.PubMedGoogle Scholar
  95. Lowe, T. P., and Larkin, J. R. Sex reversal in Bella splendens Regan with emphasis on the problem of sex determination. Journal of Experimental Zoology, 1975, 191, 25.PubMedGoogle Scholar
  96. Martinez-Vargas, M. C., Gibson, D. B., Sar, M., and Stumpf, W. E. Estrogen target sites in the brain of the chick embryo. Science, 1975, 190, 1307.PubMedGoogle Scholar
  97. Mashaly, M. M., and Glick, B. Comparison of androgen levels in normal males (Gallus domesticus) and in males made sexually inactive by embryonic exposure to testosterone propionate. General and Comparative Endocrinology, 1979, 38, 105–110.PubMedGoogle Scholar
  98. Mason, P., and Adkins, E. K. Hormones and social behavior in the lizard, Anolis carolinensis. Hormones and Behavior, 1976, 7, 75.Google Scholar
  99. Mauldin, J. M., Wolfe, J. L., and Glick, B. The behavior of chickens following embryonic treatment with testosterone propionate. Poultry Science, 1975, 54, 2133.Google Scholar
  100. Maynard Smith, J. The Evolution of Sex. Cambridge: Cambridge University Press, 1978.Google Scholar
  101. McDonald, P., Beyer, C., Newton, F., Brien, B., Baker, R., Tan, H. S., Sampsom, C., Kitching, P., Greenhill, R., and Pritchard, D. Failure of 5a-dihydrotestosterone to initiate sexual behavior in the castrated male rat. Nature, 1970, 227, 964.PubMedGoogle Scholar
  102. McEwen, B. S., and Pfaff, D. W. Chemical and physiological approaches to neuroendocrine mechanisms: Attempts at integration. In W. F. Ganong and L. Martini (Eds.), Frontiers in Neuroendocrinology. New York: Oxford University Press, 1973.Google Scholar
  103. Mittwoch, U. Chromosomes and sex differentiation. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.Google Scholar
  104. Moore, C. L. Maternal behavior of rats is affected by hormonal condition of pups. journal of Comparative REGAN and Physiological Psychology, 1982, 96, 123.Google Scholar
  105. Moore, F. L. Differential effects of testosterone plus dihydrotestosterone on male courtship of castrated newts, Taricha granulosa. Hormones and Behavior, 1978, 11, 202.Google Scholar
  106. Moore, F. L., and Zoeller, R. T. Endocrine control of amphibian sexual behavior: Evidence for a neurohormone-androgen interaction. Hormones and Behavior, 1979, 13, 207.Google Scholar
  107. Morescalchi, A. Amphibia. In A. B. Chiarelli and E. Capanna (Eds.), Cytotaxonomy and Vertebrate Evolution. London: Academic Press, 1973.Google Scholar
  108. Morris, J. B. The Effect of Early Steroid Hormone Administration on the Adult Sexual Behavior of the Zebra Finch, Poephila guttata. Master’s thesis, Cornell University, 1980.Google Scholar
  109. Naftolin, F., Ryan, K. J., and Petro, Z. Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. Endocrinology, 1972, 90, 295.PubMedGoogle Scholar
  110. Noble, G. K., and Kumpf, K. F. R. Sex reversal in the fighting fish, Betta splendens. Anatomical Record, 1937, 70, 97.Google Scholar
  111. Nottebohm, F., and Arnold, A. P. Sexual dimorphism in vocal control areas of the songbird brain. Science, 1976, 194, 211.PubMedGoogle Scholar
  112. Ohno, S. Sex Chromosomes and Sex-Linked Genes. Berlin: Springer-Verlag, 1967.Google Scholar
  113. Orcutt, F. S. Effects of oestrogen on the differentiation of some reproductive behaviours in male pigeons (Columba livia). Animal Behaviour, 1971, 19, 277.Google Scholar
  114. Ottinger, M. A., and Bakst, M. R. Peripheral androgen concentrations and testicular morphology in embryonic and young male Japanese quail. General and Comparative Endocrinology, 1981, 43, 170–177.PubMedGoogle Scholar
  115. Ozon, R. Mise en évidence d’hormones stéröides oestrogènes dans le sang de la poule adulte et chez l’embryon de poulet. Comptes Rendus de l’Académie des Sciences (Paris), 1965, 261, 5664.Google Scholar
  116. Palka, Y., and Gorbman, A. Pituitary and testicular influenced sexual behavior in male frogs, Rana pipiens. General and Comparative Endocrinology, 1973, 21, 148.Google Scholar
  117. Pieau, C. Temperature and sex differentiation in embryos of two chelonians, Emys orbicularis L. and Testudo graeca L. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.Google Scholar
  118. Pincus, G., and Hopkins, T. F. The effects of various estrogens and steroid substances on sex differentiation in the fowl. Endocrinology, 1958, 62, 112.PubMedGoogle Scholar
  119. Pohl-Apel, G., and Sossinka, R. Der Einfluss früher Hormongaben auf den Entwicklungsverlauf und die Ausbildung primärer und sekundärer Geschlechtsmerkmale einschliesslich Sexualverhalten beim Zebrafinken, Taeniopygia guttata castanotis (Estrildidae): III. Wirkung von prä-und postnatalen Östrogengaben. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1982a, 75, 326 (abstract).Google Scholar
  120. Pohl-Apel, G., and Sossinka, R. Männchen-typischer Gesang bei weiblichen Zebrafinken (Taeniopygia guttata castanotis). Journal für Ornithologie, 1982b, 123, 211.Google Scholar
  121. Pressley, P. H. Pair formation and joint territoriality in a simultaneous hermaphrodite: The coral reef fish Serranus tigrinus. Zeitschrift für Tierpsychologie, 1981, 56, 33.Google Scholar
  122. Price, D., Zaaijer, J. J. P., Ortiz, E., and Brinkmann, A. C. Current views on embryonic sex differentiation in reptiles, birds and mammals. In E. J. W. Barrington (Ed.), Trends in Comparative Endocrinology. American Zoological Suppl., 1975.Google Scholar
  123. Pröve, E. Der Einfluss von Kastration und Testosteronsubstitution auf das Sexualverhalten männlicher Zebrafinken (Taeniopygia guttata castanotis Gould). Journal of Ornithology, 1974, 115, 338–347.Google Scholar
  124. Pröve, E. Hormonal correlates of behavioural development in male zebra finches. In J. Balthazart, E. Pröve and R. Gilles (Eds.), Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag, 1983.Google Scholar
  125. Ray-Chaudhuri, R. Cytotaxonomy and chromosome evolution in birds. In A. B. Chiarelli and E. Capanna (Eds.), Cytotaxonomy and Vertebrate Evolution. London: Academic Press, 1973.Google Scholar
  126. Reinboth, R. Intersexuality in fishes. Memoirs of the Society of Endocrinology, 1970, 18, 515.Google Scholar
  127. Reinboth, R. Some remarks on secondary sex characters, sex and sexual behavior in teleosts. General and Comparative Endocrinology, 1972, Suppl. 3, 565.Google Scholar
  128. Rissman, E. F., Ascenzi, M., Johnson, P., and Adkins-Regan, E. Effect of embryonic treatment with oestradiol benzoate on reproductive morphology, ovulation and oviposition and plasma LH concentrations in female quail (Coturnix coturnix japonica). Journal of Reproduction and Fertility, 1984, 71, 211–217.Google Scholar
  129. Robertson, D.R. Social control of sex reversal in a coral-reef fish. Science, 1972, 177, 1007.PubMedGoogle Scholar
  130. Romanoff, A. L. The Avian Embryo. New York: Macmillan, 1960.Google Scholar
  131. Sachs, B. D. Photoperiodic control of reproductive behavior and physiology of the male Japanese quail (Coturnix coturnix japonica). Hormones and Behavior, 1969, 1, 7.Google Scholar
  132. Schmidt, R. S. Masculinization of toad pretrigeminal nucleus by androgens. Brain Research, 1982, 244, 190.PubMedGoogle Scholar
  133. Schumacher, M., and Balthazart, J. The postnatal demasculinization of sexual behavior in the Japanese quail (Couurnix coturnix japonica). Hormones and Behavior, 1984, 18, 298.PubMedGoogle Scholar
  134. Shapiro, D. Y. Serial female sex changes after simultaneous removal of males from social groups of a coral reef fish. Science, 1980, 209, 1136.PubMedGoogle Scholar
  135. Smith, C. L. The evolution of hermaphroditism in fishes. In R. Reinboth (Ed.), Intersexuality in the Animal Kingdom. New York: Springer-Verlag, 1975.Google Scholar
  136. Sossinka, R. Ovarian development in an opportunistic breeder, the zebra finch Poephila guttata castanotis. Journal of Experimental Zoology, 1980, 211, 225–230.Google Scholar
  137. Sossinka, R., and Pohl-Apel, G. Der Einfluss früher Hormongaben auf den Entwicklungsverlauf and die Ausbildung primärer and sekundärer Geschlechtsmerkmale einschliesslich Sexualverhalten beim Zebrafinken, Taeniopygia guttata castanotis (Estrildidae): II. Wirkung von postnatalen Testosteron-and Antiandrogengaben. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1982, 75, 333 (abstract).Google Scholar
  138. Sossinka, R., Pohl-Apel, G., and Hall, M. R. Der Einfluss früher Hormongaben auf den Entwicklungsverlauf and die Ausbildung primärer and sekundärer Geschlechtsmerkmale einschliesslich Sexualverhalten beim Zebrafinken, Taeniopygia guttata castanotis (Estrildidae): I. Wirkung von pränatalen Testosterongaben. Verhandlungen der Deutschen Zoologischen Gesellschaft, 1981, 202, 202.Google Scholar
  139. Taber, E. Intersexuality in birds. In C. N. Armstrong and A. J. Marshall (Eds.), Intersexuality in Vertebrates Including Man. London: Academic Press, 1964.Google Scholar
  140. Tanabe, Y., Nakamura, T., Fujioka, K., and Doi, O. Production and secretion of sex steroid hormones by the testes, the ovary, and the adrenal glands of embryonic and young chickens (Gallus domesticus). General and Comparative Endocrinology, 1979, 39, 26–33.PubMedGoogle Scholar
  141. Urbanski, H. F., and Follett, B. K. Sexual differentiation of the photoperiodic response in Japanese quail. Journal of Endocrinology, 1982, 92, 279.PubMedGoogle Scholar
  142. Van Tienhoven, A. Reproductive Physiology of Vertebrates. Philadelphia: Saunders, 1968.Google Scholar
  143. Wada, M. Effects of sex steroids on calling, locomotor activity, and sexual behavior in castrated male Japanese quail. Hormones and Behavior, 1982, 16, 147.PubMedGoogle Scholar
  144. Wai, E. H., and Hoar, W. S. The secondary sex characters and reproductive behavior of gonadectomized sticklebacks treated with methyl testosterone. Canadian Journal of Zoology, 1963, 41, 611–628.Google Scholar
  145. Warner, R. L., Cain, J. R., Moreng, G. R., and Maniscalco, V. J. Reproductive organs and behavior of Japanese quail following treatment of embryos with steroids and antisteroids. Anatomical Record, 1977, 187, 742.Google Scholar
  146. Warner, R.R. The adaptive significance of sequential hermaphroditism in animals. American Naturalist, 1975, 109, 61.Google Scholar
  147. Warner, R. R. The evolution of hermaphroditism and unisexuality in Aquatic and terrestrial vertebrates. In E. S. Reese and F. J. Lighter (Eds.), Contrasts in Behavior. New York: Wiley, 1978.Google Scholar
  148. Warner, R. R., Robertson, D. R., and Leigh, E. G. Sex change and sexual selection. Science, 1975, 190, 633.PubMedGoogle Scholar
  149. Wentworth, B. C., Hendricks, B. G., and Sturtevant, J. Sterility induced in Japanese quail by spray treatment of eggs with mestranol. Journal of Wildlife Management, 1968, 32, 879.Google Scholar
  150. Whitsett, J. M., Irvin, E. W., Edens, F. W., and Thaxton, J. P. Demasculinization of male Japanese quail by prenatal estrogen treatment. Hormones and Behavior, 1977, 8, 254–260.PubMedGoogle Scholar
  151. Williams, G. C. Sex and Evolution. Princeton, N.J.: Princeton University Press, 1975.Google Scholar
  152. Wilson, J. A., and Glick, B. Ontogeny of mating behavior in the chicken. American Journal of Physiology, 1970, 218, 951.PubMedGoogle Scholar
  153. Wilson, M. I., and Bermant, G. An analysis of social interactions in Japanese quail, Coturnix coturnix japonica. Animal Behaviour, 1972, 20, 252.Google Scholar
  154. Witschi, E. Age of sex-determining mechanisms in vertebrates. Science, 1959, 130, 372.PubMedGoogle Scholar
  155. Witschi, E. Mechanisms of sexual differentiation. In M. Hamburgh and E. J. W. Barrington (Eds.), Hormones in Development. New York: Appleton-Century-Crofts, 1971.Google Scholar
  156. Wolff, E. Endocrine function of the gonad in developing vertebrates. In A. Gorman (Ed.), Comparative REGAN Endocrinology. New York: Wiley, 1959. -Google Scholar
  157. Woods, J. E., and Brazzill, D. M. Plasma 17ß-estradiol levels in the chick embryo. General and Comparative Endocrinology, 1981, 44, 37–43.PubMedGoogle Scholar
  158. Woods, J. E., Simpson, R. M., and Moore, P. L. Plasma testosterone levels in the chick embryo. General and Comparative Endocrinology, 1975, 27, 543–547.PubMedGoogle Scholar
  159. Yamamoto, T.-O. Sex differentiation. In W. S. Hoar and D. J. Randall (Eds.), Fish Physiology. New York: Academic Press, 1969.Google Scholar
  160. Yamamoto, T.-O., and Kajishima, T. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamety. Journal of Experimental Zoology, 1968, 146, 163.Google Scholar
  161. Yntema, C. L. Temperature levels and periods of sex determination during incubation of eggs of Chelydra serpentina. Journal of Morphology, 1979, 159, 17–28.Google Scholar
  162. Young, W. C., Goy, R. W., and Phoenix, C. H. Hormones and sex behavior. Science, 1964, 143, 212–218.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Elizabeth Adkins-Regan
    • 1
  1. 1.Department of Psychology and Section of Neurobiology and BehaviorCornell UniversityIthacaUSA

Personalised recommendations