Advertisement

Ordered and Disordered Growth of Renal Cells

  • F. Gary Toback

Abstract

Hyperplasia of tubular cells has been linked to cystic disease of the kidney for more than a century (Sturm, 1875). A sequence of events leading from tubular cell hyperplasia to cyst formation is proposed in Fig. 1. First, there must be an inciting cause of cell proliferation and perhaps a genetic or acquired predisposition to respond to it. Once cell growth is initiated, proliferating epithelial cells pile up on the tubular wall and form adenomatous masses. These masses or polyps are thought to partially obstruct the passage of fluid down the nephron, thereby raising intratubular pressure, dilating the tubule wall, and eventually causing cysts to form.

Keywords

Cyst Formation Cystic Disease Kidney Epithelial Cell Label Nucleus Potassium Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aithal, H. N., and Toback, F. G., 1978, Defective mitochondrial energy production during potassium depletion nephropathy, Lab. Invest. 39:186.PubMedGoogle Scholar
  2. Aithal, H. N., Toback, F. G., Dube, S., Getz, G. S., and Spargo, B. H., 1977a, Formation of renal medullary lysosomes during potassium depletion nephropathy, Lab. Invest. 36:107.PubMedGoogle Scholar
  3. Aithal, H. N., Toback, F. G., Ordónez, N. G., and Spargo, B. H., 1977b, Functional defects in mitochondria of renal inner red medulla during potassium depletion nephropathy, Lab. Invest. 37:423.PubMedGoogle Scholar
  4. Berman, J., Perantoni, A., Jackson, H. M., and Kingsbury, E., 1979, Primary epithelial cell culture of adult rat kidney, enhancement of cell growth by ammonium acetate, Exp. Cell Res. 121:47.PubMedCrossRefGoogle Scholar
  5. Burrows, G. D., Davies, B., and Kincaid-Smith, P., 1978, Unique tubular lesion after lithium, Lancet 1:1310.PubMedCrossRefGoogle Scholar
  6. Carpenter, G., and Cohen, S., 1979, Epidermal growth factor, Annu. Rev. Biochem. 48:193.PubMedCrossRefGoogle Scholar
  7. Evan, A. P., and Gardner, K. D., Jr., 1979, Nephron obstruction in nordihydroguaiaretic acid-induced renal cystic disease, Kidney Int. 15:7.PubMedCrossRefGoogle Scholar
  8. Evan, A. P., and Ollerich, D. A., 1972, The effect of lithium carbonate on the structure of the rat kidney, Am. J. Anat. 134:97.PubMedCrossRefGoogle Scholar
  9. Evan, A. P., Hong, S. K., Gardner, K., Jr., Park, Y. S., and Itagaki, R., 1978, Evolution of the collecting tubular lesion in diphenylamine-induced renal disease, Lab. Invest. 38:244.PubMedGoogle Scholar
  10. Evan, A. P., Gardner, K. D., Jr., and Bernstein, J., 1979, Polypoid and papillary epithelial hyperplasia: A potential cause of ductal obstruction in adult polycystic disease, Kidney Int. 16:743.PubMedCrossRefGoogle Scholar
  11. Gardner, K. D., Jr., Solomon, S., Fitzgerrel, W. W., and Evan, A. P., 1976, Function and structure in the diphenylamine-exposed kidney, J. Clin. Invest. 57:796.PubMedCrossRefGoogle Scholar
  12. Gustafson, A. B., Shear, L., and Gabuzda, G. J., 1973, Protein metabolism in vivo in kidney, liver, muscle, and heart of potassium-deficient rats, J. Lab. Clin. Med. 82:287.PubMedGoogle Scholar
  13. Havener, L. J., and Toback, F. G., 1980, Amino acid modulation of renal phosphatidylcholine biosynthesis in the rat, J. Clin. Invest. 65:741.PubMedCrossRefGoogle Scholar
  14. Heppel, L. A., 1940, The diffusion of radioactive sodium into the muscles of potassium-deprived rats, Am. J. Physiol. 128:449.Google Scholar
  15. Hestbech, J., Hansen, H. E., Amdisen, A., and Olson, S., 1977, Chronic renal lesions following long-term treatment with lithium, Kidney Int. 12:205.PubMedCrossRefGoogle Scholar
  16. Holley, R. W., 1975, Control of growth of mammalian cells in cell culture, Nature 258:487.PubMedCrossRefGoogle Scholar
  17. Holley, R. W., Armour, R., Baldwin, J. H., Brown, K. D., and Yeh, Y.-C., 1977, Density-dependent regulation of growth of BSC-1 cells in cell culture: Control of growth by serum factors, Proc. Natl. Acad. Sci. USA 74:5046.PubMedCrossRefGoogle Scholar
  18. Holley, R. W., Armour, R., and Baldwin, J. H., 1978a, Density-dependent regulation of growth of BSC-1 cells in cell culture: Control of growth by low molecular weight nutrients, Proc. Natl. Acad. Sci. USA 75:339.PubMedCrossRefGoogle Scholar
  19. Holley, R. W., Armour, R., and Baldwin, J. H., 1978b, Density-dependent regulation of growth of BSC-1 cells in cell culture: Growth inhibitors formed by the cells, Proc. Natl. Acad. Sci. USA 75:1864.PubMedCrossRefGoogle Scholar
  20. Holley, R. W., Böhlen, P., Fava, R., Baldwin, J. H., Kleeman, G., and Armour, R., 1980, Purification of kidney epithelial cell growth inhibitors, Proc. Natl. Acad. Sci. USA 77:5989.PubMedCrossRefGoogle Scholar
  21. Ishikawa, I., Saito, Y., Onouchi, Z., Kitada, H., Suzuki, S., Kurihara, S., Yuri, T., and Shinoda, A., 1980, Development of acquired cystic disease and adenocarcinoma of the kidney in glomerulonephritic chronic hemodialysis patients, Clin. Nephrol. 14:1.PubMedGoogle Scholar
  22. Johnson, J. D., Epel, D., and Paul, M., 1976, Intracellular pH and activation of sea urchin eggs after fertilisation, Nature (London) 262:661.CrossRefGoogle Scholar
  23. Katz, A. I., and Lindheimer, M. D., 1973, Renal sodium-and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat, J. Clin. Invest. 52:796.PubMedCrossRefGoogle Scholar
  24. Kennedy, E. P., and Weiss, S. B., 1956, The function of cytidine coenzymes in the biosynthesis of phospholipids, J. Biol. Chem. 222:193.PubMedGoogle Scholar
  25. Liebow, A. A., McFarland, W. J., and Tennant, R., 1941, The effects of potassium deficiency on tumor-bearing mice, Yale J. Biol. Med. 13:523.PubMedGoogle Scholar
  26. Koch, K. S., and Leffert, H. L., 1979, Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation, Cell 18:153.PubMedCrossRefGoogle Scholar
  27. Korenchevsky, V., Dennison, M., and Kohn-Speyer, A., 1933, Changes produced by testicular hormone in normal and in castrated rats, Biochem. J. 27:557.PubMedGoogle Scholar
  28. Lindop, G. B. M., and Padfield, P. L., 1975, The renal pathology in a case of lithium-induced diabetes insipidus, J. Clin. Pathol. 28:472.PubMedCrossRefGoogle Scholar
  29. Lowenstein, L. M., and Stern, A., 1963, Serum factor in renal compensatory hyperplasia, Science 142:1479.PubMedCrossRefGoogle Scholar
  30. Lozzio, B. B., Lozzio, C. B., Bamberger, E. G., and Lair, S. V., 1975, Regulators of cell division: endogenous mitotic inhibitors of mammalian cells, Int. Rev. Cytol. 42:1.PubMedCrossRefGoogle Scholar
  31. Ogawa, K., and Nowinski, W. W., 1958, Mitosis stimulating factor in serum of unilaterally nephrectomized rats, Proc. Soc. Exp. Biol. Med. 99:350.PubMedGoogle Scholar
  32. Oliver, J., MacDowell, M., Welt, L. G., Holliday, M. A., Hollander, W., Jr., Winters, R. W., Williams, T. F., and Segar, W. E., 1957, The renal lesions of electrolyte imbalance. I. The structural alterations in potassium-depleted rats, J. Exp. Med. 106:563.PubMedCrossRefGoogle Scholar
  33. Ordóñez, N. G., Toback, F. G., Aithal, H. N., and Spargo, B. H., 1977, Zonal changes in renal structure and phospholipid metabolism during reversal of potassium depletion nephropathy, Lab. Invest. 36:33.PubMedGoogle Scholar
  34. Perey, D. Y. E., Herdman, R. C., and Good, R. A., 1967, Polycystic renal disease: A new experimental model, Science 158:494.PubMedCrossRefGoogle Scholar
  35. Rouser, G., Simon, G., and Kritchevsky, G., 1969, Species variations in phospholipid class distribution of organs: I. Kidney, liver and spleen, Lipids 4:599.PubMedCrossRefGoogle Scholar
  36. Schrader, G. A., Prickett, C. O., and Salmon, W. D., 1937, Symptomatology and pathology of potassium and magnesium deficiencies in the rat, J. Nutr. 14:85.Google Scholar
  37. Smith, J. B., and Rozengurt, E., 1978, Serum stimulates the Na+, K+ pump in quiescent fibroblasts by increasing Na+ entry, Proc. Natl. Acad. Sci. USA 75:5560.PubMedCrossRefGoogle Scholar
  38. Spargo, B., 1954, Kidney changes in hypokalemic alkalosis in the rat, J. Lab. Clin. Med. 43:802.PubMedGoogle Scholar
  39. Sturm, P., 1875, Über das adenom der niere und über die beziehung desselben zu einigen anderen neubildungen der niere, Arch. Heilk. 16:193.Google Scholar
  40. Toback, F. G., 1980, Induction of growth in kidney epithelial cells in culture by Na+, Proc. Natl. Acad. Sci. USA 77:6654.PubMedCrossRefGoogle Scholar
  41. Toback, F. G., and Havener, L. J., 1979, Mechanism of enhanced phospholipid formation during potassium depletion nephropathy, Am. J. Physiol. 236:E429.PubMedGoogle Scholar
  42. Toback, F. G., Smith, P. D., and Lowenstein, L. M., 1974, Phospholipid metabolism in the initiation of renal compensatory growth after acute reduction of renal mass, J. Clin. Invest. 54:91.PubMedCrossRefGoogle Scholar
  43. Toback, F. G., Ordóñez, N. G., Bortz, S. L., and Spargo, B. H., 1976, Zonal changes in renal structure and phospholipid metabolism in potassium-deficient rats, Lab. Invest. 34:115.PubMedGoogle Scholar
  44. Toback, F. G., Havener, L. J., Dodd, R. C., and Spargo, B. H., 1977a, Phospholipid metabolism during renal regeneration after acute tubular necrosis, Am. J. Physiol. 232:E216.Google Scholar
  45. Toback, F. G., Havener, L. J., and Spargo, B. H., 1977b, Stimulation of renal phospholipid formation during potassium depletion, Am. J. Physiol. 233:E212.PubMedGoogle Scholar
  46. Toback, F. G., Aithal, H. N., Ordóñez, N. G., and Spargo, B. H., 1979, Altered bioenergetics in proliferating renal cells during potassium depletion, Lab. Invest. 41:265.PubMedGoogle Scholar
  47. Wu, R., and Racker, E., 1963, Control of rate-limiting factors of glycolysis in tumor cells, in: Control Mechanisms in Respiration and Fermentation (B. Wright, ed.), Ronald Press, New York, pp. 265–288.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • F. Gary Toback
    • 1
  1. 1.Department of MedicineUniversity of Chicago Pritzker School of MedicineChicagoUSA

Personalised recommendations