Advertisement

Cell Membranes pp 247-294 | Cite as

Role of the β-Adrenergic Receptor in the Regulation of Adenylate Cyclase

  • Murray D. Smigel
  • Elliott M. Ross
  • Alfred G. Gilman

Abstract

Hormones circulating outside of cells influence the metabolic activities of enzymes within them. Although the existence of these interactions has been known, at least in rudimentary form, for close to a century, the identities of the proteins responsible for their mediation are just now being established. Among the many hormonally controlled systems that have been studied, the β-adrenergic receptor—adenylate cyclase complex holds an important place. Studies of it have, in many instances, shaped our ideas about the mechanisms of the signaling process. In part, this has been due to the great variety of chemical compounds that are known to either stimulate or block β-adrenergic receptors. The availability of these compounds has allowed the pharmacological definition of a variety of subclasses of adrenergic receptors. Prominent among them are the α and β receptors and the more recently established distinctions within each of these classes (Langer, 1977).

Keywords

Adenylate Cyclase Adrenergic Receptor Cholera Toxin Guanine Nucleotide Adenylate Cyclase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Katada, T., Gilman, A. G., and Ross, E. M., 1984, Activation of the inhibitory GTPbinding protein of adenylate cyclase, Gi, by β-adrenergic receptors in phospholipid vesicles, J. Biol. Chem.,in press.Google Scholar
  2. Atlas, D., and Levitzki, A., 1977, Probing of β-adrenergic receptors by novel fluorescent 3adrenergic blockers, Proc. Natl. Acad. Sci. USA 74: 5290–5294.PubMedGoogle Scholar
  3. Atlas, D., and Levitzki, A., 1978a, Tentative identification of ß-adrenoceptor subunits, Nature 272: 370–371.PubMedGoogle Scholar
  4. Atlas, D., and Levitzki, A., 1978b, Fluorescent visualization of 3-adrenergic receptors on cell surfaces, FEBS Leu. 85: 158–162.Google Scholar
  5. Atlas, D., Steer, M. L., and Levitzki, A., 1976, Affinity label for 3-adrenergic receptor in turkey erythrocytes, Proc. Natl. Acad. Sci. USA 73: 1921–1925.PubMedGoogle Scholar
  6. Aurbach, G. D., Fedak, S. A., Woodard, C. J., Palmer, J. S., Hauser, D., and Troxler, F., 1974, 3-Adrenergic receptor: Stereospecific interaction of iodinated 3-blocking agent with high affinity site, Science 186: 1223–1224.Google Scholar
  7. Barnes, P., Koppel, H., Lewis, P., Hutson, C., Blair, I., and Dollery, C., 1980, A fluorescent analogue of propranolol does not label ß-adrenoceptor sites, Brain Res. 181: 209–213.PubMedGoogle Scholar
  8. Barovsky, K., and Brooker, G., 1980, (-)-[125Illodopindolol, a new highly selective radioiodinated 3-adrenergic receptor antagonist: Measurement of 3-receptors on intact rat astrocytoma cells, J. Cyclic Nucleotide Res. 6: 297–307.Google Scholar
  9. Bearer, C. F., Knapp, R. D., Kaumann, A. J., Swartz, T. L., and Bimbaumer, L., 1979, Iodohydroxybenzylpindolol: Preparation, purification, localization of its iodine to the indole ring, and characterization as a partial agonist, Mol. Pharmacol. 17: 328–338.Google Scholar
  10. Bennett, V., and Cuatrecasas, P., 1976, Irreversible activation of adenylate *lase of toad eryth- rocyte plasma membrane by 5’-guanylylimidodiphosphate, J. Membrane Biol. 27: 207–232.Google Scholar
  11. Benovic, J. L., Stiles, G. L., Lefkowitz, R. J., and Caron, M. G., 1983, Photoaffinity labelling of mammalian 3-adrenergic receptors: Metal-dependent proteolysis explains apparent heterogeneity, Biochem. Biophys. Res. Commun. 110: 504–511.PubMedGoogle Scholar
  12. Bimbaumer, L., 1977, The actions of hormones and nucleotides on membrane-bound adenylyl cyclases: an overview, in: Receptors and Hormone Action, Volume I ( B. O’Malley and L. Bimbaumer, eds.), Academic Press, New York, pp. 485–548.Google Scholar
  13. Bimbaumer, L., Swartz, T. L., Abramowitz, J., Mintz, P. W., and Iyengar, R., 1980, Transient and steady-state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase from rat liver plasma membranes, J. Biol. Chem. 255: 3542–3551.Google Scholar
  14. Bitonti, A. J., Moss, J., Tandon, N. N., and Vaughan, M., 1980, Prostaglandins increase GTP hydrolysis by membranes from human mononuclear cells, J. Biol. Chem. 255: 2026–2029.PubMedGoogle Scholar
  15. Bitonti, A. J., Moss, J., Hjelmeland, L., and Vaughan, M., 1982, Resolution and activity of adenylate cyclase components in a zwitterionic cholate derivative [3-[β-cholamidopropyl)dimethylammonio]-1-propanesulfonate], Biochemistry 21: 3650–3653.PubMedGoogle Scholar
  16. Blume, A. J., and Foster, C. J., 1976, Neuroblastoma adenylate cyclase: role of 2-chloroadenosine, prostaglandin E, and guanine nucleotides in the regulation of activity, J. Biol. Chem. 251: 3399–3404.PubMedGoogle Scholar
  17. Boeynaems, J. M., and Dumont, J. E., 1977, Models of dissociable receptors applicable to cyclic AMP-dependent protein kinases and membrane receptors, Mol. Cell Endocrinol. 7: 275–295.PubMedGoogle Scholar
  18. Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L., and Gilman, A. G., 1983, Identification of the predominant substrate for ADP-ribosylation by islet activating protein, J. Biol. Chem. 258: 2072–2075.PubMedGoogle Scholar
  19. Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G., 1984, Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, J. Biol. Chem. 259: 3560–3567.PubMedGoogle Scholar
  20. Boume, H. R., Coffino, P., Melmon, K. L., Tomkins, G. M., and Weinstein, Y., 1975a, Genetic analysis of cyclic AMP in a mammalian cell, Adv. Cyclic Nucleotide Res. 5: 771–786.Google Scholar
  21. Bourne, H. R., Coffino, P., and Tomkins, G. M., 1975b, Selection of a variant lymphoma cell deficient in adenylate cyclase, Science 187: 750–752.PubMedGoogle Scholar
  22. Brandt, D. R., Asano, T., Pedersen, S. E., and Ross, E. M., 1983, Reconstitution of catecholaminestimulated GTPase activity, Biochemistry 22: 4357–4362.PubMedGoogle Scholar
  23. Braun, S., and Levitzki, A., 1979, Adenosine receptors permanently coupled to turkey erythrocyte adenylate cyclase, Biochemistry 18: 2134–2138.PubMedGoogle Scholar
  24. Brown, E. M., Aurbach, G. D., Hauser, D., and Troxler, F., I976a, ß-Adrenergic receptor interactions: Characterization of iodohydroxybenzylpindolol as a specific ligand, J. Biol. Chem. 251: 1232–1238.Google Scholar
  25. Brown, E. M., Fedak, S. A., Woodard, C. J., Aurbach, G. D., and Rodbard, D., 1976b, ßAdrenergic receptor interactions: Direct comparison of receptor interaction and biological activity, J. Biol. Chem. 251: 1239–1246.PubMedGoogle Scholar
  26. Burgermeister, W., Hekman, M., and Helmreich, E. J. M., 1982, Photoaffinity labeling of the 3-adrenergic receptor with azide derivatives of iodocyanopindolol, J. Biol. Chem. 257: 5306–5311.PubMedGoogle Scholar
  27. Bürgisser, E., Hancock, A. A., Lefkowitz, R. J., and DeLean, A., 1981a, Anomalous equilibrium binding properties of high-affinity racemic radioligands, Mol. Pharmacol. 19:205–216. Bürgisser, E., Lefkowitz, R. J., and DeLean, A., 1981b, Alternative explanation for the apparent “two-step” binding kinetics of high-affinity racemic antagonist radioligands, Mol. Pharmacol. 19: 509–512.PubMedGoogle Scholar
  28. Bums, D. L., Moss, J., and Vaughan, M., 1982, Choleragen-stimulated release of guanyl nucleotides from turkey erythrocyte membranes, J. Biol. Chem. 257: 32–34.Google Scholar
  29. Bums, D. L., Moss, J., and Vaughan, M., 1983, Release of guanyl nucleotides from the regulatory subunit of adenylate cyclase, J. Biol. Chem. 258: 1116–1120.Google Scholar
  30. Caron, M. G., and Lefkowitz, R. J., 1976, Solubilization and characterization of the ß-adrenergic receptor binding sites of frog erythrocytes, J. Biol. Chem. 251: 2374–2384.PubMedGoogle Scholar
  31. Caron, M. G., Srinivasan, Y., Pitha, J., Kociolek, K., and Lefkowitz, R. J., 1979, Affinity chromatography of the 3-adrenergic receptor, J. Biol. Chem. 254: 2923–2927.PubMedGoogle Scholar
  32. Cassel, D., and Pfeuffer, T., 1978, Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of adenylate cyclase, Proc. Natl. Acad. Sci. USA 75: 2669–2673.PubMedGoogle Scholar
  33. Cassel, D., and Selinger, Z., 1976, Catecholamine-stimulated GTPase activity in turkey erythrocytes, Biochim. Biophys. Acta 452: 538–551.PubMedGoogle Scholar
  34. Cassel, D., and Selinger, Z., 1977a, Mechanism of adenylate cyclase activation by cholera toxin: an inhibition of GTP hydrolysis at the regulatory site, Proc. Natl. Acad. Sci. USA 74: 3307–3311.PubMedGoogle Scholar
  35. Cassel, D., and Selinger, Z., 1977b, Catecholamine-induced release of [311J-Gpp(NH)p from turkey erythrocyte adenylate cyclase, J. Cyclic Nucleotide Res. 3: 11–22.PubMedGoogle Scholar
  36. Cassel, D., and Selinger, Z., 1978, Mechanism of adenylate cyclase activation through the ßadrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP, Proc. Natl. Acad. Sci. USA 75: 4155–4159.PubMedGoogle Scholar
  37. Cherksey, B. D., Zadunaisky, J. A., and Murphy, R. B., 1980, Cytoskeletal constraint of the 3-adrenergic receptor in frog erythrocyte membranes, Proc. Natl. Acad. Sci. USA 77: 6401–6405.PubMedGoogle Scholar
  38. Citri, Y., and Schramm, M., 1980, Resolution, reconstitution, and kinetics of the primary action of a hormone receptor, Nature (London) 287: 297–300.Google Scholar
  39. Citri, Y., and Schramm, M., 1982, Probing the coupling site of the 3-adrenergic receptor. Competition between different forms of the guanyl nucleotide binding protein for interaction with the receptor, J. Biol. Chem. 257: 13257–13262.PubMedGoogle Scholar
  40. Coffino, P., Bourne, H. R., and Tompkins, G. M., 1974, Somatic genetic analysis of cyclic AMP action: selection of unresponsive mutants, J. Cell. Physiol. 85: 603–610.Google Scholar
  41. Cuatrecasas, P., Bennett, V., and Jacobs, S., 1975a, Irreversible stimulation of adenylate cyclase activity of fat cell membranes by phosphoramidate and phosphonate analogs of GTP, J. Membrane Biol. 23: 249–278.Google Scholar
  42. Cuatrecasas, P., Jacobs, S., and Bennet, V., 1975b, Activation of adenylate cyclase by phosphoramidate and phosphonate analogs of GTP: Possible role of covalent enzyme-substrate intermediates in the mechanism of hormonal activation, Proc. Natl. Acad. Sci. USA 72: 1739–1743.PubMedGoogle Scholar
  43. Dufau, M. L., Charreau, E. H., Ryan, D., and Catt, K. J., 1974, Soluble gonadotropin receptors of the rat ovary, FEBS Lett. 39: 149–153.PubMedGoogle Scholar
  44. Dufau, M. L., Hayashi, K., Sala, G., Baukal, A., and Catt, K. J., 1978, Gonadal luteinizing hormone receptors and adenylate cyclase: Transfer of functional ovarian luteinizing hormone receptors to adrenal fasciculata cells, Proc. Natl. Acad. Sci. USA 75: 4769–4773.PubMedGoogle Scholar
  45. Durieu—Trautmann, O., Delavier—Klutchko, C., Vauquelin, G., and Strosberg, A. D., 1980, Visualization of the turkey erythrocyte 3-adrenergic receptor, J. Supramol. Struct. 13: 411–419.Google Scholar
  46. Eimerl, S., Neufeld, G., Korner, M., and Schramm, M., 1980, Functional implantation of a solubilized ß-adrenergic receptor in the membrane of a cell, Proc. Natl. Acad. Sci. USA 77: 760–764.PubMedGoogle Scholar
  47. Engel, G., Hoyer, D., Berthold, R., and Wagner, H., 1981, (±)[125IodoJ-cyanopindolol, a new ligand for 3-adrenoceptors: identification and quantitation of subclasses of 3-adrenoceptors in guinea pig, Naunyn Schmiedebergs Arch. Pharmacol. 317: 277–285.Google Scholar
  48. Ezrailson, E. G., Garber, A. J., Munson, P. J., Swartz, T. L., Birnbaumer, L., and Entman, M. L., 1981, [125I]Iodopindolol: A new 3-adrenergic receptor probe, J. Cyclic Nucleotide Res. 7: 13–26.Google Scholar
  49. Fleming, J. W., and Ross, E. M., 1980, Reconstitution of 3-adrenergic receptors into phospholipid vesicles: Restoration of [125I]iodohydroxybenzylpindolol binding to digitonin-solubilized receptors, J. Cyclic Nucleotide Res. 6: 407–419.PubMedGoogle Scholar
  50. Florio, V. A., and Ross, E. M., 1983, Regulation of the catalytic component of adenylate cyclase. Potentiative interaction of stimulating ligands and 2’,5’-dideoxyadenosine. Mol. Pharmacol. 24: 195–202.PubMedGoogle Scholar
  51. Frost, Robert, 1916, The road not taken.Google Scholar
  52. Furchgott, R. F., 1972, The classification of adrenoceptors (adrenergic receptors); an evaluation from the standpoint of receptor theory, in: Handbook of Experimental Pharmacology, Volume 33, Catacholamines ( H. Blaschko, and E. Muscholl, eds.), Springer, Berlin, pp. 283–335.Google Scholar
  53. Gill, D. M., and Meren, R., 1978, ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase, Proc. Natl. Acad. Sci. USA 75: 3050–3054.PubMedGoogle Scholar
  54. Guellaen, G., Yates-Aggerbeck, M., Vauquelin, G., Strosberg, A. D., and Hanoune, J., 1978, Characterization with [3H]dihydroergocryptine of the a-adrenergic receptor of the hepatic plasma membrane: Comparison with the 3-adrenergic receptor in normal and adrenalectomized rats, J. Biol. Chem. 253: 1114–1120.PubMedGoogle Scholar
  55. Haga, T., Haga, K., and Gilman, A. G., 1977a, Hydrodynamic properties of the 3-adrenergic receptor and adenylate cyclase from wild type and variant S49 lymphoma cells, J. Biol. Chem. 252: 5776–5782.PubMedGoogle Scholar
  56. Haga, T., Ross, E. M., Anderson, H. J., and Gilman, A. G., 1977b, Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells, Proc. Natl. Acad. Sci. USA 74: 2016–2020.PubMedGoogle Scholar
  57. Hanski, E., and Gilman, A. G., 1982, The guanine nucleotide-binding regulatory component of adenylate cyclase in human erythrocytes, J. Cyclic Nucleotide Res. 8: 323–336.PubMedGoogle Scholar
  58. Hanski, E., Rimon, G., and Levitzki, A., 1979, Adenylate cyclase activation by the 3-adrenergic receptor as a diffusion-controlled process, Biochemistry 18: 846–853.PubMedGoogle Scholar
  59. Hanski, E., Sternweis, P. C., Northup, J. K., Dromerick, A. W., and Gilman, A. G., 1981, The regulatory component of adenylate cyclase: Purification and properties of the turkey erythrocyte protein, J. Biol. Chem. 256: 12911–12919.PubMedGoogle Scholar
  60. Harden, T. K., 1983, Agonist-induced desensitization of the 3-adrenergic receptor-linked adenylate cyclase, Pharmacol. Rev. 35: 5–32.PubMedGoogle Scholar
  61. Hazeki, O., and Ui, M., 1981, Modification by islet-activating protein of receptor-mediated regu-lation of cyclic AMP accumulation in isolated rat heart cells, J. Biol. Chem. 256: 2856–2862.PubMedGoogle Scholar
  62. Henis, Y. I., Hekman, M., Elson, E. L., and Helmreich, E. J. M., 1982a, Lateral motion of P-receptors in membranes of cultured liver cells, Proc. Natl. Acad. Sci. USA 79: 2907–2911.PubMedGoogle Scholar
  63. Henis, Y. I., Rimon, G., and Felder, S., 1982b, Lateral mobility of phospholipids in turkey erythrocytes. Implications for adenylate cyclase activation, J. Biol. Chem. 257:1407–1411. Hjelmeland, L. M., 1980, A nondenaturing zwitterionic detergent for membrane biochemistry: Design and synthesis, Proc. Natl. Acad. Sci. USA 77: 6368–6370.Google Scholar
  64. Hoffmann, F. M., 1979a, Solubilization and reconstitution of dopamine-sensitive adenylate cyclase from bovine caudate nucleus, J. Biol. Chem. 254: 255–258.PubMedGoogle Scholar
  65. Hoffmann, F. M., 1979b, A new method for removing nonionic detergent that allows reconstitution of dopamine-sensitive adenylate cyclase, Biochem. Biophys. Res. Comm. 86: 988–994.PubMedGoogle Scholar
  66. Homcy, C., Rockson, S. G., Countaway, J., and Egan, D. A., 1983, Purification and characterization of the mammalian [32-adrenergic receptor, Biochemistry 22: 660–668.PubMedGoogle Scholar
  67. Houslay, M. D., and Gordon, L. M., 1983, The activity of adenylate cyclase is regulated by the nature of its lipid environment, Curr. Top. Membrane Transport 18: 179–231.Google Scholar
  68. Howlett, A. C., and Gilman, A. G., 1980, Hydrodynamic properties of the regulatory component of adenylate cyclase, J. Biol. Chem. 255: 2861–2866.PubMedGoogle Scholar
  69. Howlett, A. C., Sternweis, P. C., Macik, B. A., Van Arsdale, P. M., and Gilman, A. G., 1979, Reconstitution of catecholamine-sensitive adenylate cyclase: association of a regulatory component of the enzyme with membranes containing the catalytic protein and 3-adrenergic receptors, J. Biol. Chem. 254: 2287–2295.PubMedGoogle Scholar
  70. Insel, P. A., Maguire, M. E., Gilman, A. G., Boume, H. R., Coffino, P., and Melmon, K. L., 1976, Adrenergic receptors and adenylate cyclase: Products of separate genes? Mol. Pharm. 12: 1062–1069.Google Scholar
  71. Jacobs, S., Bennett, V., and Cuatrecasas, P., 1976, Kinetics of irreversible activation of adenylate cyclase of fat cell membranes by phosphonium and phosphoramidate analogs of GTP, J. Cyclic Nucleotide Res. 2: 205–223.PubMedGoogle Scholar
  72. Jakobs, K. H., Aktories, K., Lasch, P., Saur, W., and Schultz, G., 1980, Hormonal inhibition of adenylate cyclase, in: Hormones and Cell Regulation, European Symposium, Volume 4 ( J. Dumont and J. Nunez, eds.), Elsevier Press, Amsterdam, pp. 89–106.Google Scholar
  73. Johnson, G. L., Harden, T. K., and Perkins, J. P., 1978, Regulation of adenosine 3’:5’-monophosphate content of Rous sarcoma virus-transformed human astrocytoma cells, J. Biol. Chem. 253: 1465–1471.PubMedGoogle Scholar
  74. Johnson, G. L., Bourne, H. R., Gleason, M. K., Coffino, P., Insel, P. A., and Melmon, K. L., 1979, Isolation and characterization of S49 lymphoma cells deficient in 3-adrenergic receptors: Relation of receptor number to activation of adenylate cyclase, Mol. Pharmacol. 15: 16–27.PubMedGoogle Scholar
  75. Johnson, R. A., 1982, An approach to the identification of adenosine’s inhibitory site on adenylate cyclase, FEBS Lett. 140: 80–84.PubMedGoogle Scholar
  76. Johnson, R. A., and Garbers, D. L., 1977, An approach to the study of the kinetics of adenylyl cyclase, in: Receptors and Hormone Action, Volume I ( B. O’Malley and L. Birnbaumer, eds.), Academic Press, New York, pp. 549–572.Google Scholar
  77. Johnson, R. A., and Sutherland, E. W., 1974, Preparation of particulate and detergent-disperse adenylate cyclase from brain, in: Methods in Enzymology, Volume 38 ( J. G. Hardman, and B. O’Malley, eds.), Academic Press, New York, pp. 135–143.Google Scholar
  78. Johnson, R. A., Garbers, D. L., and Pilkis, S. J., 1976, Some kinetic and chromatographic properties of detergent-dispersed adenylate cyclase, J. Supramol. Struc. 4: 205–220.Google Scholar
  79. Kaslow, H. R., Farfel, Z., Johnson, G. L., and Boume, H. R., 1979, Adenylate cyclase assembled in vitro: Cholera toxin substrates determine different patterns of resolution by isoproterenol and guanosine 5’-triphosphate, Mol. Pharmacol. 15: 472–483.PubMedGoogle Scholar
  80. Kaslow, H. R., Johnson, G. L., Brothers, V. M., and Bourne, H. R., 1980, A regulatory component of adenylate cyclase from human erythrocytes, J. Biol. Chem. 255: 3736–3741.PubMedGoogle Scholar
  81. Katada, T., and Ui, M., 1979, Islet-activating protein. Enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophores, J. Biol. Chem. 254: 469–479.PubMedGoogle Scholar
  82. Katada, T., and Ui, M., 1980, Slow interaction of islet-activating protein with pancreatic islets during primary culture to cause reversal of a-adrenergic inhibition of insulin secretion, J. Biol. Chem. 255: 9580–9588.PubMedGoogle Scholar
  83. Katada, T., and Ui, M., 1982a, ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity, J. Biol. Chem. 257: 7210–7216.PubMedGoogle Scholar
  84. Katada, T., and Ui, M., 1982b, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein, Proc. Natl. Acad. Sci. USA 79: 3129–3133.PubMedGoogle Scholar
  85. Katada, T., Amano, T., and Ui, M., 1982, Modulation by islet-activating protein of adenylate cyclase activity in C6 glioma cells, J. Biol. Chem. 257: 3739–3746.PubMedGoogle Scholar
  86. Katada, T., Bokoch, G. M., Smigel, M., Ui, M., and Gilman, A. G., 1984a, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc and wild type membranes, J. Biol. Chem. 259: 3586–3595.PubMedGoogle Scholar
  87. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M., and Gilman, A. G., 1984b, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein, J. Biol. Chem. 259: 3568–3577.PubMedGoogle Scholar
  88. Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G., 1984c, The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition, J. Biol. Chem. 259: 3578–3585.PubMedGoogle Scholar
  89. Keenan, A. K., Gal, A., and Levitzki, A., 1982, Reconstitution of the turkey erythrocyte adenylate cyclase sensitivity to 1-epinephrine upon re-insertion of the Lubrol-solubilized components into phospholipid vesicles, Biochem. Biophys. Res. Commun. 105: 615–623.PubMedGoogle Scholar
  90. Kempner, E. S., and Miller, J. H., 1983, Radiation inactivation of glutamate dehydrogenase hexamer: Lack of energy transfer between subunits, Science 222: 586–589.PubMedGoogle Scholar
  91. Kempner, E. S., and Schlegel, W., 1979, Size determination of enzymes by radiation inactivation, Anal. Biochem. 92: 2–10.PubMedGoogle Scholar
  92. Kimura, N., and Shimada, N., 1983, GDP does not mediate but rather inhibits hormonal signal to adenylate cyclase, J. Biol. Chem. 258: 2278–2283.PubMedGoogle Scholar
  93. Kirilovsky, J., and Schramm, M., 1983, Delipidation of a 3-adrenergic receptor preparation and reconstitution by specific lipids, J. Biol. Chem. 258: 6841–6849.PubMedGoogle Scholar
  94. Kleinfeld, A. M., Dragsten, P., Klausner, R. D., Pjura, W. J., and Matoyishi, E. D., 1981, The lack of relationship between fluorescence polarization and lateral diffusion in biological membranes, Biochim. Biophys. Acta 649: 471–480.PubMedGoogle Scholar
  95. Lambert, M., Sroboda, M., and Christopher, J., 1979, Hormone-stimulated GTPase activity in rat pancreatic plasma membranes, FEBS Lett. 99: 303–307.PubMedGoogle Scholar
  96. Lands, A. M., Arnold, A., McAuliff, J. P., Luduena, F. P., and Brown, T. G., Jr., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214: 597–598.PubMedGoogle Scholar
  97. Langer, S. Z., 1977, Presynaptic receptors and their role in the regulation of transmitter release. Sixth Gaddum Memorial Lecture, National Institute for Medical Research, Mill Hill (January 1977), Br. J. Pharmacol. 60: 481–497.PubMedGoogle Scholar
  98. Larner, A. C., and Ross, E. M., 1981, Alteration in the protein components of catecholaminesensitive adenylate cyclase during maturation of rat reticulocytes, J. Biol. Chem. 256: 9551–9557.PubMedGoogle Scholar
  99. Lavin, T. N., Heald, S. L., Jeffs, P. W., Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G., 1981, Photoaffinity labeling of the ß-adrenergic receptor, J. Biol. Chem. 256: 11944–11950.PubMedGoogle Scholar
  100. Lavin, T. N., Nambi, P., Heald, S. L., Jeffs, P. W., Lefkowitz, R. J., and Caron, M. G., 1982, I-labeled p-azidobenzylcarazolol, a photoaffinity label for the ß-adrenergic receptor: Characterization of the ligand and photoaffinity labeling of (3f-and 132-adrenergic receptors, J. Biol. Chem. 257: 12332–12340.PubMedGoogle Scholar
  101. Lefkowitz, R. J., Mukherjee, C., Coverstone, M., and Caron, M. G., 1974, Stereospecific NI(—)alprenolol binding sites, ß-adrenergic receptors and adenylate cyclase, Biochem. Biophys. Res. Commun. 60: 703–709.PubMedGoogle Scholar
  102. Lester, N. A., Steer, M. L., and Levitzki, A., 1982, Prostaglandin-stimulated GTP hydrolysis associated with activation of adenylate cyclase in human platelet membranes, Proc. Natl. Acad. Sci. USA 79: 719–723.PubMedGoogle Scholar
  103. Levitzki, A., 1977, The role of GTP in the activation of adenylate cyclase, Biochem. Biophys. Res. Commun. 74: 1154–1159.PubMedGoogle Scholar
  104. Levitzki, A., 1980, Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cyclase by 3-adrenergic receptors, FEBS Lett. 115: 9–10.PubMedGoogle Scholar
  105. Levitzki, A., 1981, The f3-adrenergic receptor and its mode of coupling to adenylate cyclase, CRC Crit. Rev. Biochem., 10: 81–112.PubMedGoogle Scholar
  106. Levitzki, A., Atlas, D., and Steer, M. L., 1974, The binding characteristics and number of 13-adrenergic receptors on the turkey erythrocyte, Proc. Natl. Acad. Sci. USA 71: 2773–2776.PubMedGoogle Scholar
  107. Limbird, L. E., and Lefkowitz, R. J., 1977, Resolution of 3-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography, J. Biol. Chem. 252: 799–802.PubMedGoogle Scholar
  108. Limbird, L. E., and Lefkowitz, R. J., 1978, Agonist-induced increase in apparent 3-adrenergic receptor size, Proc. Natl. Acad. Sci. USA 75: 228–232.PubMedGoogle Scholar
  109. Londos, C., Salomon, Y., Lin, M. C., Harwood, J. P., Schramm, M., Wolff, J., and Rodbell, M., 1974, 5’-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells, Proc. Natl. Acad. Sci. USA 71: 3087–3090.Google Scholar
  110. Londos, C., Wolff, J., and Cooper, D. M. B., 1979, Action of adenosine on adenylate cyclase, in: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides ( H. P. Baer and G. I. Drummond, eds.), Raven Press, New York, pp. 271–281.Google Scholar
  111. Maguire, M. E., and Erdos, J. J., 1980, Inhibition of magnesium uptake by [3-adrenergic agonists and prostaglandin E1 is not mediated by cyclic AMP, J. Biol. Chem. 255: 1030–1035.PubMedGoogle Scholar
  112. Maguire, M. E., Van Arsdale, P. M., and Gilman, A. G., 1976a, An agonist-specific effect of guanine nucleotides on binding to the [3-adrenergic receptor, Mol. Pharmacol. 12: 335–339.PubMedGoogle Scholar
  113. Maguire, M. E., Brunton, L. L., Wiklund, R. A., Anderson, H. J., Van Arsdale, P. M., and Gilman, A. G., 1976b, Hormone receptors and the control of cyclic AMP metabolism in parental and hybrid somatic cells, Rec. Prog. Hormone Res. 32: 633–667.Google Scholar
  114. Maguire, M. E., Ross, E. M., and Gilman, A. G., 1977, 3-Adrenergic receptor: Ligand binding properties and the interaction with adenylyl cyclase, Adv. Cyclic Nucleotide Res. 8: 1–83.Google Scholar
  115. Malchoff, C. D., and Marinetti, G. V., 1976, Hormone action at the membrane level. V. Binding of (±)-[3H]isoproterenol to intact chicken erythrocytes and erythrocyte ghosts, Biochim. Biophys. Acta 436: 45–52.PubMedGoogle Scholar
  116. Manning, D. R., and Gilman, A. G., 1983, The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins, J. Biol. Chem. 258: 7059–7063.PubMedGoogle Scholar
  117. Martin, B. R., 1983, The analysis of interactions between hormone receptors and adenylate cyclase by target size determinations using irradiation inactivation, Curr. Top. Mem. Transport 18: 233–254.Google Scholar
  118. Mukherjee, C., Caron, M. G., Coverstone, M., and Lefkowitz, R. J., 1975, Identification of adenylate cyclase-coupled 3-adrenergic receptors in frog erythrocytes with (-)-[3H]alprenolol, J. Biol. Chem. 250: 4869–4876.Google Scholar
  119. Murad, F., Chi, Y.M., Rall, T. W., and Sutherland, E. W., 1962, Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3’,5’-phosphate by preparations from cardiac muscle and liver, J. Biol. Chem. 237: 1233–1238.PubMedGoogle Scholar
  120. Neer, E. J., 1974, The size of adenylate cyclase, J. Biol. Chem. 249: 6527–6531.PubMedGoogle Scholar
  121. Neer, E. J., 1978, Size and detergent binding of adenylate cyclase from bovine cerebral cortex, J. Biol. Chem. 253: 1498–1502.PubMedGoogle Scholar
  122. Neer, E. J., and Salter, R. S., 1981, Reconstituted adenylate cyclase from bovine brain. Functions of the subunits, J. Biol. Chem. 256: 12102–12107.PubMedGoogle Scholar
  123. Neer, E. J., Echeverria, D., and Knox, S., 1980, Increase in the size of soluble brain adenylate cyclase with activation by guanosine 5’-(3,y-imino)triphosphate, J. Biol. Chem. 255: 9782–9789.PubMedGoogle Scholar
  124. Neufeld, G., Schramm, M., and Weinberg, N., 1980, Hybridization of adenylate cyclase components by membrane fusion and the effect of selective digestion by trypsin, J. Biol. Chem. 255: 9268–9274.PubMedGoogle Scholar
  125. Northup, J. K., Stemweis, P. C.. Smigel, M. D., Schleifer, L. S., Ross, F_. M, and G,lmar, G., 1980, Purification of the regulatory component of adenylate cyclase, Proc. Natl. Acad. Sci. USA 77: 6516–6520.Google Scholar
  126. Northup, J. K., Smigel, M. D., and Gilman, A. G., 1982, The guanine nucleotide activating site of the regulatory component of adenylate cyclase: Identification by ligand binding, J. Bio!. Chem. 257: 11416–11423.Google Scholar
  127. Northup, J. K., Smigel, M. D., Stemweis, P. C., and Gilman, A. G., 1983a, The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000dalton a subunit, J. Bio!. Chem. 258: 11369–11376.Google Scholar
  128. Northup, J. K., Sternweis, P. C., and Gilman, A. G., 1983b, The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity, and properties of the 35,000dalton ß subunit, J. Bio!. Chem. 258: 11361–11368.Google Scholar
  129. Orly, J., and Schramm, M., 1975, Fatty acids as modulators of membrane functions: catecholamineactivated adenylate cyclase of turkey erythrocytes, Proc. Nati. Acad. Sci. USA 72: 3433–3437.Google Scholar
  130. Orly, J., and Schramm, M., 1976, Coupling of catecholamine receptor from one cell with adenylate cyclase from another cell by cell fusion, Proc. Nat!. Acad. Sci. USA 73: 4410–4414.PubMedGoogle Scholar
  131. Pedersen, S. E., and Ross, E. M., 1982, Functional reconstitution of 13-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase, Proc. Nat!. Acad. Sci. USA 79: 7228–7232.PubMedGoogle Scholar
  132. Perkins, J. P., 1973, Adenyl cyclase, Adv. Cyclic Nucleotide Res. 3: 1–64.PubMedGoogle Scholar
  133. Pfeuffer, T., 1977, GTP-binding proteins in membranes and the control of adenylate cyclase activity, J. Bio!. Chem. 252: 7224–7234.Google Scholar
  134. Pfeuffer, T., 1979, Guanine nucleotide-controlled interactions between components of adenylate cyclase, FEBS Lea. 101: 85–89.Google Scholar
  135. Pfeuffer, T., and Metzger, H., 1982, 7–0-Hemisuccinyl-deacetyl forskolin-sepharose: A novel affinity support for purification of adenylate cyclase, FEBS Lett. 146: 369–375.Google Scholar
  136. Pike, L. J., and Lefkowitz, R. J., 1980, Activation and desensitization of ß-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes, J. Bio!. Chem. 255: 6860–6867.Google Scholar
  137. Pike, L. J., and Lefkowitz, R. J., 1981, Correlation of ß-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation, J. Bio!. Chem. 256: 2207–2212.Google Scholar
  138. Pike, L. J., Limbird, L. E., and Lefkowitz, R. J., 1979, ß-Adrenoceptors determine affinity but not intrinsic activity of adenylate cyclase stimulants, Nature 280: 502–504.PubMedGoogle Scholar
  139. Rail, T. W., Sutherland, E. W., and Berthet, J., 1957, The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphoryiase in liver homogenates, J. Bio!. Chem. 224: 463–475.Google Scholar
  140. Rashidbaigi, A., and Ruoho, A. E., 1981, Iodoazidopindolol, a photoaffinity probe for the 13adrenergic receptor, Proc. Nati. Acad. Sci. USA 78: 1609–1613.Google Scholar
  141. Rashidbaigi, A., and Ruoho, A. E., 1982, Photoaffinity labeling of ß-adrenergic receptors: Identification of the 13 receptor binding site(s) from turkey, pigeon and frog erythrocyte, Biochem. Biophys. Res. Commun. 106: 139–148.PubMedGoogle Scholar
  142. Reilly, T. M., and Blecher, M., 1981, Restoration of glucagon responsiveness in spontaneously transformed rat hepatocytes (RL-PR-C) by fusion with normal progenitor cells and rat liver plasma membranes, Proc. Nat!. Acad. Sci. USA 78: 182–186.PubMedGoogle Scholar
  143. Rimon, G., Hanski, E., Braun, S., and Levitzki, A., 1978, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature 276: 394–396.PubMedGoogle Scholar
  144. Rimon, G., Hanski, E., and Levitzki, A., 1980, Temperature dependence of ß receptor, adenosine receptor, and sodium fluoride stimulated adenylate cyclase from turkey erythrocytes, Biochemistry 19: 4451–4460.PubMedGoogle Scholar
  145. Rodbell, M., 1975, On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides: An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones, J. Bio!. Chem. 250: 5826–5834.Google Scholar
  146. Rodbell, M., Bimbaumer, L., Pohl, S. L., and Krans, H. M. J., 1971a, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action, J. Biol. Chem. 246: 1877–1882.PubMedGoogle Scholar
  147. Rodbell, M., Krans, H. M. J., Pohl, S. L., and Bimbaumer, L., 1971b, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of ‘21-glucagon, J. Biol. Chem. 246: 1872–1876.PubMedGoogle Scholar
  148. Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M., and Berman, M., 1975, Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multisite transition states, Adv. Cyclic Nucleotide Res. 5: 3–29.PubMedGoogle Scholar
  149. Ross, E. M., 1981, Physical separation of the catalytic and regulatory proteins of hepatic adenylate cyclase, J. Biol. Chem. 256: 1949–1953.PubMedGoogle Scholar
  150. Ross, E. M., 1982, Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase, J. Biol. Chem. 257: 10751–10758.PubMedGoogle Scholar
  151. Ross, E. M., and Gilman, A. G., 1977a, Reconstitution of catecholamine-sensitive adenylate cyclase activity: Interaction of solubilized components with receptor-replete membranes, Proc. Natl. Acad. Sci. USA 74: 3715–3719.PubMedGoogle Scholar
  152. Ross, E. M., and Gilman, A. G., 1977b, Resolution of some components of adenylate cyclase necessary for catalytic activity, J. Biol. Chem. 252: 6966–6969.PubMedGoogle Scholar
  153. Ross, E. M., and Gilman, A. G., 1980, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533–564.PubMedGoogle Scholar
  154. Ross, E. M., Maguire, M. E., Sturgill, T. W., Biltonen, R. L., and Gilman, A. G., 1977, Relationship between the ß-adrenergic receptor and adenylate cyclase. Studies of ligand binding and enzyme activity in purified membranes of S49 lymphoma cells, J. Biol. Chem. 252: 5761–5775.PubMedGoogle Scholar
  155. Ross, E. M., Howlett, A. C., Ferguson, K. M., and Gilman, A. G., 1978, Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme, J. Biol. Chem. 253: 6401–6412.PubMedGoogle Scholar
  156. Ross, E. M., Asano, T., Pedersen, S. E., and Brandt, D. R., 1984, Reconstitution of the regulatory functions of 13-adrenergic receptors, in: Neurotransmitter Receptors: Mechanisms of Action and Regulation (S. Kito, T. Segawa, K. Kuriyama, H. I. Yamamura, and R. W. Olsen, eds.), Plenum Press, New York, in press.Google Scholar
  157. Schlegel, W., Kempner, E. S., and Rodbell, M., 1979, Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins, J. Biol. Chem. 254: 5168–5176.PubMedGoogle Scholar
  158. Schleifer, L. S., Kahn, R. A., Hanski, E., Northup, J. K., Sternweis, P. C., and Gilman, A. G., 1982, Requirements for cholera toxin-dependent ADP-ribosylation of the purified regulatory component of adenylate cyclase, J. Biol. Chem. 257: 20–23.PubMedGoogle Scholar
  159. Schramm, M., 1979, Transfer of glucagon receptor from liver membranes to a foreign adenylate cyclase by a membrane fusion procedure, Proc. Natl. Acad. Sci. USA 76: 1174–1178.PubMedGoogle Scholar
  160. Schramm, M., and Rodbell, M., 1975, A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes, J. Biol. Chem. 250: 2232–2237.PubMedGoogle Scholar
  161. Schramm, M., Orly, J., Eimerl, S., and Komer, M., 1977, Coupling of hormone receptors to adenylate cyclase of different cells by cell fusion, Nature 268: 310–313.PubMedGoogle Scholar
  162. Schulster, D., Orly, J., Seidel, G., and Schramm, M., 1978, Intracellular cyclic AMP production enhanced by a hormone receptor transferred from a different cell. ß-Adrenergic responses in cultured cells conferred by fusion with turkey erythrocytes, J. Biol. Chem. 253: 1201–1206.PubMedGoogle Scholar
  163. Schwarzmeier, J. D., and Gilman. A. G., 1977, Reconstitution of catecholamine-sensitive adenylate cyclase activity: Interaction of components following cell-cell and membrane-cell fusion, J. Cyclic Nucleotide Res. 3: 227–238.PubMedGoogle Scholar
  164. Seamon, K., and Daly, J. W., 1981a, Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein, J. Biol. Chem. 256: 9799–9801.PubMedGoogle Scholar
  165. Seamon, K., and Daly, J. W., 1981b, Forskolin: A unique diterpene activator of cyclic AMP-generating systems, J. Cyclic Nucleotide Res. 7: 201–224.PubMedGoogle Scholar
  166. Seamon, K., Padgett, W., and Daly, J. W., 1981, Forskolin: A unique diterpene activator of adenylate cyclase in membranes and in intact cells, Proc. Natl. Acad. Sci. USA 78: 3363–3367.PubMedGoogle Scholar
  167. Sevilla, N., Steer, M. L., and Levitzki, A., 1976, Synergistic activation of adenylate cyclase by guanylyl imidophosphate and epinephrine, Biochemistry 15: 3493–3499.PubMedGoogle Scholar
  168. Shinitzky, M., and Barenholz, Y., 1974, Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate, J. Biol. Chem. 249: 2652–2657.PubMedGoogle Scholar
  169. Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G., 1981, Purification of the ß-adrenergic receptor. Identification of the hormone binding subunit, J. Biol. Chem. 256: 5820–5826.PubMedGoogle Scholar
  170. Shorr, R. G. L., Heald, S. L., Jeffs, P. W., Lavin, T. N., Strohsacker, M. W., Lefkowitz, R. J., and Caron, M. G., 1982a, The 13-adrenergic receptor: Rapid purification and covalent labeling by photoaffinity crosslinking, Proc. Natl. Acad. Sci. USA 79: 2778–2782.PubMedGoogle Scholar
  171. Shorr, R. G. L., Strohsacker, M. W., Lavin, T. N., Lefkowitz, R. J., and Caron, M. G., 1982b, The 13i-adrenergic receptor of the turkey erythrocyte. Molecular heterogeneity revealed by purification and photoaffinity labeling, J. Biol. Chem. 257: 12341–12350.PubMedGoogle Scholar
  172. Smigel, M. D., Northup, J. K., and Gilman, A. G., 1982, Characteristics of the guanine nucleotide-binding regulatory component of adenylate cyclase, Recent Prog. Horm. Res. 38: 601–624.PubMedGoogle Scholar
  173. Smigel, M. D., Katada, T., Northup, J. K., Bokoch, G. M., Ui, M., and Gilman, A. G., 1984, Mechanisms of guanine nucleotide-mediated regulation of adenylate cyclase activity, Adv. Cyclic Nucleotide Res. 17: 1–18.Google Scholar
  174. Stadel, J. M., Shorr, R. G. L., Limbird, L. E., and Lefkowitz, R. J., 1981, Evidence that a 13adrenergic receptor-associated guanine nucleotide regulatory protein conveys guanosine 5’-O(3-thiotriphosphate)-dependent adenylate cyclase activity, J. Biol. Chem. 256: 8718–8723.PubMedGoogle Scholar
  175. Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. F., Caron, M. G., and Lefkowitz, R. J., 1983, Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the (3-adrenergic receptor, Proc. Natl. Acad. Sci. USA 80: 3173–3177.PubMedGoogle Scholar
  176. Stengel, D., and Hanoune, J., 1980, Solubilization and physical characterization of the adenylate cyclase from rat-liver plasma membranes, Eur. J. Biochem. 102: 21–34.Google Scholar
  177. Stemweis, P. C., and Gilman, A. G., 1979, Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S49 lymphoma cell, J. Biol. Chem. 254: 3333–3340.Google Scholar
  178. Stemweis, P. C., and Gilman, A. G., 1982, Aluminum: A requirement for activation of the regulatory component of adenylate cyclase by fluoride, Proc. Natl. Acad. Sci. USA 79: 4888–4891.Google Scholar
  179. Stemweis, P. C., Northup, J. K., Smigel, M. D., and Gilman, A. G., 1981, The regulatory component of adenylate cyclase: Purification and properties, J. Biol. Chem. 256: 11517–11526.Google Scholar
  180. Strittmatter, S., and Neer, E. J., 1980, Properties of the separated catalytic and regulatory units of brain adenylate cyclase, Proc. Natl. Acad. Sci. USA 77: 6344–6348.PubMedGoogle Scholar
  181. Strulovici, B., Stadel, J. M., and Lefkowitz, R. J., 1983, Functional integrity of desensitized 13adrenergic receptors. Internalized receptors reconstitute catecholamine-stimulated adenylate cyclase activity, J. Biol. Chem. 258: 6410–6414.PubMedGoogle Scholar
  182. Sutherland, E. W., Rall, T. W., and Menon, T., 1962, Adenyl cyclase. I. Distribution, preparations, and properties, J. Biol. Chem. 237: 1220–1227.PubMedGoogle Scholar
  183. Swillens, S., and Dumont, J. E., 1981, A pitfall in the interpretation of data on adenylate cyclase inactivation by irradiation, FEBS Lett. 134: 29–31.PubMedGoogle Scholar
  184. Tolkovsky, A. M., 1983, The elucidation of some aspects of receptor function by the use of a kinetic approach, in: Current Topics in Membranes and Transport, Volume 18 ( A. Kleinzeller and B. R. Martin, eds.), Academic Press, New York, pp. 11–41.Google Scholar
  185. Tolkovsky, A. M., and Levitzki, A., 1978a, Mode of coupling between the 3-adrenergic receptor and adenylate cyclase in turkey erythrocytes, Biochemistry 17: 3795–3810.PubMedGoogle Scholar
  186. Tolkovsky, A. M., and Levitzki, A., 1978b, Coupling of a single adenylate cyclase to two receptors: Adenosine and catecholamine, Biochemistry 17: 3811–3817.PubMedGoogle Scholar
  187. Tolkovsky, A. M., Braun, S., and Levitzki, A., 1982, Kinetics of interaction between 3-receptors, GTP protein, and the catalytic unit of turkey erythrocyte adenylate cyclase, Proc. Natl. Acad. Sci. USA 79: 213–217.PubMedGoogle Scholar
  188. Vauquelin, G., Geynet, P., Hanoune, J., and Strosberg, A. D., 1977, Isolation of adenylate cyclasefree 3-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography, Proc. Natl. Acad. Sci. USA 74: 3710–3714.Google Scholar
  189. Weber, G., 1975, Energetics of ligand binding to proteins, Adv. Prot. Chem. 29: 1–83.Google Scholar
  190. Westeott, K. R., LaPorte, D. C., and Storm, D. R., 1979, Resolution of adenylate cyclase sensitive and insensitive to Cat+ and calcium-dependent regulatory protein (CDR) by CDR—Sepharose affinity chromatography, Proc. Natl. Acad. Sci. USA 76: 204–208.Google Scholar
  191. Williams, L. T., and Lefkowitz, R. J., 1977, Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the 3-adrenergic receptor, J. Biol. Chem. 252: 7207–7213.PubMedGoogle Scholar
  192. Williams, L. T., and Lefkowitz, R. J., 1978, Receptor Binding Studies in Adrenergic Pharmacology, Raven Press, New York.Google Scholar
  193. Witkin, K. M., and Harden, T. K., 1981, A sensitive equilibrium binding assay for soluble 3adrenergic receptors, J. Cyclic Nucleotide Res. 7: 235–246.PubMedGoogle Scholar
  194. Wolfe, B. B., Harden, K., and Molinoff, P. B., 1977, In vitro study of 3-adrenergic receptors, Ann. Rev. Pharmacol. Toxicol. 17: 575–604.Google Scholar
  195. Wrenn, S. M., Jr., and Homcy, C. J., 1980, Photoaffinity label for the 3-adrenergic receptor: Synthesis and effects on isoproterenol-stimulated adenylate cyclase, Proc. Natl. Acad. Sci. USA 77: 4449–4453.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Murray D. Smigel
    • 1
  • Elliott M. Ross
    • 1
  • Alfred G. Gilman
    • 1
  1. 1.Department of PharmacologyUniversity of Texas Health Science Center at DallasDallasUSA

Personalised recommendations