Cell Membranes pp 149-195 | Cite as

The Human Erythrocyte as a Model System for Understanding Membrane Cytoskeleton Interactions

  • Vann Bennett


The prevailing view of membrane structure presented in many undergraduate textbooks is that of proteins floating in the plane of a fluid phospholipid bilayer (Singer and Nicolson, 1972). Many observations in the last 10 years indicate, however, that biological membranes do not behave as simple two-dimensional solutions of proteins. Measurements of the rates of lateral diffusion of membrane proteins in a variety of systems have revealed populations of proteins that are not mobile. The proteins that are mobile move at rates 10- to 100-fold slower than predicted on the basis of membrane viscosity (reviewed by Cherry, 1979). The diffusion constants of these slowly diffusing proteins are increased 200-fold in areas of the cell where the membrane is separated from the cytoplasm (Tank et al., 1982). Furthermore, diffusion of proteins may be nonrandom in some cells (Smith et al., 1979) and can require metabolic energy as in formation of caps of surface-labeled proteins in lymphocytes (Unanue and Karnovsky, 1973). These examples indicate possibilities for long-range interactions and organization in cell membranes and have led to proposals that at least some membrane proteins have direct interactions with underlying cytoplasmic proteins (Singer, 1974; Nicolson, 1974; Edelman, 1976; Bourguignon and Singer, 1977).


Erythrocyte Membrane Human Erythrocyte Hereditary Spherocytosis Erythrocyte Ghost Human Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agre, P., Orringer, E., Chui, D., and Bennett, V., 1981, A molecular defect in two families with hemolytic poikilocytic anemia, J. Clin. Invest. 68: 1566–1576.PubMedCrossRefGoogle Scholar
  2. Agre, P., Orringer, E., and Bennett, V., 1982, Deficient red cell spectrin in severe recessively inherited spherocytosis, N. Engl. J. Med. 306: 1155–1161.PubMedCrossRefGoogle Scholar
  3. Agre, P., Gardner, K., and Bennett, V., 1983, Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes, J. Biol. Chem. 258: 6258–6265.PubMedGoogle Scholar
  4. Anderson, J. M., and Tyler, J. M., 1980, State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes, J. Biol. Chem. 255: 1259–1265.Google Scholar
  5. Anderson, R. A. and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 to the human erythrocyte membrane skeleton, Nature 307: 655–658.PubMedCrossRefGoogle Scholar
  6. Bartell, D. C., Carlin, R. K., Scheele, G. A., and Cohen, W. D., 1982, The cytoskeletal system of nucleated erythrocytes II. Presence of a high molecular weight calmodulin-binding protein, J. Cell Biol. 95: 278–284.CrossRefGoogle Scholar
  7. Baskin, G. S., and Langdon, R. G., 1981, A spectrin-dependent ATPase of the human erythrocyte membrane, J. Biol. Chem. 256: 5428–5435.PubMedGoogle Scholar
  8. Bennett, V., 1977, Human erythrocyte spectrin: phosphorylation in intact cells and purification of the 32P-labeled protein in a nonaggregated state, Life Sci. 21: 433–440.PubMedCrossRefGoogle Scholar
  9. Bennett, V., 1978, Purification of an active proteolytic fragment of the membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 253: 2292–2299.PubMedGoogle Scholar
  10. Bennett, V., 1979, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues, Nature 281: 597–599.PubMedCrossRefGoogle Scholar
  11. Bennett, V., 1982, Isolation of an ankyrin-band 3 oligomer from human erythrocyte membranes, Biochim. Biophys. Acta 689: 475–484.PubMedCrossRefGoogle Scholar
  12. Bennett, V., and Branton, D., 1977, Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes, J. Biol. Chem. 252: 2753–2763.PubMedGoogle Scholar
  13. Bennett, V., and Davis, J., 1981, Erythrocyte ankyrin: Immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain, Proc. Natl. Acad. Sci. USA 78: 7550–7554.PubMedCrossRefGoogle Scholar
  14. Bennett, V., and Davis, J., 1982, Immunoreactive forms of human erythrocyte ankyrin are localized in mitotic structures in cultured cells and are associated with microtubules in brain, Cold Spring Harbor Symp. Quant. Biol. 46: 647–657.PubMedCrossRefGoogle Scholar
  15. Bennett, V., and Davis, J., 1983, Spectrin and ankyrin in brain, Cell Motility, 3: 623–633.PubMedCrossRefGoogle Scholar
  16. Bennett, V., and Stenbuck, P. J., 1979a, Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin, J. Biol. Chem. 254: 2533–2541.PubMedGoogle Scholar
  17. Bennett, V., and Stenbuck, P. J., 1979b, The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes, Nature 280: 468–473.PubMedCrossRefGoogle Scholar
  18. Bennett, V., and Stenbuck, P. J., 1980a, Human erythrocyte ankyrin. Purification and properties, J. Biol. Chem. 255: 2540–2548.PubMedGoogle Scholar
  19. Bennett, V., and Stenbuck, P. J., 1980b, Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane, J. Biol. Chem. 255: 6424–6432.PubMedGoogle Scholar
  20. Bennett, V., Davis, J., and Fowler, W., 1982a, Immunoreactive forms of erythrocyte spectrin and ankyrin in brain, Phil. Trans. R. Soc. Lond. 11299: 301–312.Google Scholar
  21. Bennett, V., Davis, J., and Fowler, W., 1982b, Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin, Nature 299: 126–131.PubMedCrossRefGoogle Scholar
  22. Bernstein, S. E., 1980, Inherited hemolytic disease in mice: a review and update, Lab. Animal Sci. 30: 197–205.Google Scholar
  23. Bhattacharyya, B., and Wolff, J., 1975, Membrane-bound tubulin in brain and thyroid tissue, J. Biol. Chem. 250: 7639–7646.PubMedGoogle Scholar
  24. Birchmeier, W., and Singer, S. J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP, J. Cell Biol. 73: 647–659.PubMedCrossRefGoogle Scholar
  25. Bodine, D. M., Birkenmeier, C. S., and Barker, J. E., 1983, Genetic analysis of spectrin deficient mice, Proceedings of Meeting on Actin-Membrane Interaction, Chapel Hill, North Carolina.Google Scholar
  26. Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. USA 74: 50315035.Google Scholar
  27. Brandts, J. F., Erickson, L., Lysko, K., Schwartz, A. T., and Taverna, R. D., 1977, Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition, Biochemistry 16: 3450–3454.PubMedCrossRefGoogle Scholar
  28. Branton, D., Cohen, C. M., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the human erythrocyte membrane, Cell 24: 24–32.PubMedCrossRefGoogle Scholar
  29. Brenner, S. L., and Korn, E. D., 1979, Spectrin-actin interaction. Phosphorylated and dephosphorylated spectrin tetramer cross-link F-actin, J. Biol. Chem. 254: 8620–8627.PubMedGoogle Scholar
  30. Brenner, S. L., and Korn, E. D., 1980, Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation. Evidence for oligomeric actin in the erythrocyte cytoskeleton, J. Biol. Chem. 255: 1670–1676.PubMedGoogle Scholar
  31. Bulinski, J. C., and Borisy, G., 1980a, Immunofluorescence localization of HeLa cell microtubule-associated proteins on microtubules in vitro and in vivo, J. Cell Biol. 87: 792–801.PubMedCrossRefGoogle Scholar
  32. Burns, N. R., Ohanian, V., and Gratzer, W. B., 1983, Properties of brain spectrin (fodrin), FEBS Lett. 153: 165–168.PubMedCrossRefGoogle Scholar
  33. Burridge, K., Kelly, T., and Mangeat, P., 1982, Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95: 478–486.PubMedCrossRefGoogle Scholar
  34. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of `probes,’ Biochim. Biophys. Acta 515: 239–302.PubMedCrossRefGoogle Scholar
  35. Calvert, R., Bennett, P., and Gratzer, W., 1980, Properties and structural role of the subunits of human spectrin, Eur. J. Biochem. 107: 355–361.PubMedCrossRefGoogle Scholar
  36. Carlin, R. C., Bartelt, D. C., and Siekevitz, P., 1983, Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations, J. Cell Biol. 96: 443–448.PubMedCrossRefGoogle Scholar
  37. Chang, K., Williamson, J. R., and Zarkowsky, H. S., 1979, Effect of heat on the circular dichroism of spectrin in hereditary pyropoikilocytosis, J. Clin. Invest. 64: 326–328.PubMedCrossRefGoogle Scholar
  38. Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559: 289–327.PubMedCrossRefGoogle Scholar
  39. Cherry, R. J., Burkli, A, Busslinger, M., Schneider, G., and Parish, G. R., 1976, Rotational diffusion of band 3 proteins in the human erythrocyte membrane, Nature 263: 389–393.PubMedCrossRefGoogle Scholar
  40. Coetzer, T., and Zail, S., 1982, Spectrin tetramer-dimer equilibrium in hereditary elliptocytosis, Blood 59: 900–905.PubMedGoogle Scholar
  41. Cohen, C. M., and Branton, D., 1979, The role of spectrin in erythrocyte membrane stimulated actin polymerization, Nature 279: 163–165.PubMedCrossRefGoogle Scholar
  42. Cohen, C. M., and Foley, S. F., 1980, Spectrin dependent and independent association of F-actin with the erythrocyte membrane, J. Cell Biol. 86: 694–698.PubMedCrossRefGoogle Scholar
  43. Cohen, C. M., and Foley, S. F., 1982, The role of band 4.1 in the association of actin with erythrocyte membranes, Biochim. Biophys. Acta 688: 691–701.PubMedCrossRefGoogle Scholar
  44. Cohen, C. M., Tyler, J. M., and Branton, D., 1980, Spectrin-actin associations studied by electron microscopy of shadowed preparations, Cell 21: 875–883.PubMedCrossRefGoogle Scholar
  45. Cohen, C. M., Foley, S. F., and Korsgren, C., 1982, A protein immunologically related to eryth-rocyte band 4.1 is found on stress fibers of non-erythroid cells, Nature 299: 648–650.PubMedCrossRefGoogle Scholar
  46. Cotmore, S. F., Furthmayr, H., and Marchesi, V. T., 1977, Immunocytochemical evidence for the transmembrane orientation of glycophorin A, J. Molec. Biol. 113: 539–553.PubMedCrossRefGoogle Scholar
  47. Davies, P., and Klee, C., 1981, Calmodulin-binding proteins: A high molecular weight calmodulinbinding protein from bovine brain. Biochem. Inter. 3: 203–212.Google Scholar
  48. Davis, J., and Bennett, V., 1982, Microtubule-associated protein 2, a microtubule-associated protein from brain, is immunologically related to the subunit of erythrocyte spectrin, J. Biol. Chem. 257: 5816–5820.PubMedGoogle Scholar
  49. Davis, J., and Bennett, V., 1983, Brain Spectrin: Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits, J. Biol. Chem. 258: 7757–7766.PubMedGoogle Scholar
  50. Davis, J., and Bennett, V., 1984, Brain ankyrin: Purification of a 72,000 Mr spectrin-binding domain, J. Biol. Chem. 259: 1874–1881.PubMedGoogle Scholar
  51. Dorst, H., and Schubert, D., 1979, Self-association of band 3-protein from human erythrocyte membranes in aqueous solutions, Hoppe-Seylers Z. Physiol. Chem. 360: 1605–1618.PubMedCrossRefGoogle Scholar
  52. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192: 218–226.PubMedCrossRefGoogle Scholar
  53. Elgsaeter, A., and Branton, D., 1974, Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal, J. Cell Biol. 63: 1018–1030.PubMedCrossRefGoogle Scholar
  54. Elgsaeter, A., Shotton, D. M., and Branton, D., 1976, Intramembrane particle aggregation in erythrocyte ghosts II. The influence of spectrin aggregation, Biochim. Biophys. Acta 426: 101–122.PubMedCrossRefGoogle Scholar
  55. Evans, E. A., and Hochmuth, R. M., 1978, Mechanochemical properties of membranes, Curr. Top. Membr. Transp. 10: 1–64.CrossRefGoogle Scholar
  56. Fowler, V., and Bennett, V., 1978, Association of spectrin with its membrane attachment site restricts lateral mobility of human erythrocyte integral membrane proteins, J. Supramol. Struct. 8: 215–221.CrossRefGoogle Scholar
  57. Fowler, V. and Bennett, V., 1984, Erythrocyte tropomyosin: Purification and properties, J. Biol. Chem. 259: 5978–5989.PubMedGoogle Scholar
  58. Fowler, V., and Branton, D., 1977, Lateral mobility of human erythrocyte integral membrane proteins, Nature 268: 23–26.PubMedCrossRefGoogle Scholar
  59. Fowler, V., and Taylor, D. L., 1980, Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium, J. Cell Biol. 85: 361–376.PubMedCrossRefGoogle Scholar
  60. Fowler, V. M., Luna, E. J., Hargreaves, W. R., Taylor, D. L., and Branton, D., 1981, Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane, J. Cell Biol. 88: 388–395.PubMedCrossRefGoogle Scholar
  61. Furthmayr, H., 1979, Glycophorins A, B and C: A family of sialoglycoproteins. Isolation and characterization of trypsin-derived peptides, in: Normal and Abnormal Red Cell Membranes ( S. Lux, V. Marchesi, and F. Fox, eds.), Liss, New York, p. 195.Google Scholar
  62. Glenney, J., Glenney, P., Osborn, M., and Weber, K., 1982a, An F-actin-and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin, Cell 28: 843–854.PubMedCrossRefGoogle Scholar
  63. Glenney, J., Glenney, P., and Weber, K., 1982b, Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulinbinding subunit bound to a variant cell type specific subunit, Proc. Natl. Acad. Sci. USA 79: 4002–4005.PubMedCrossRefGoogle Scholar
  64. Glenney, J., Glenney, P., and Weber, K., 1982c, F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule, J. Biol. Chem. 257: 9781–9787.PubMedGoogle Scholar
  65. Golan, D. E., and Veatch, W., 1980, Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions, Proc. Natl. Acad. Sci. USA 77: 2537–2541.PubMedCrossRefGoogle Scholar
  66. Golan, D. E., and Veatch, W. R., 1982, Lateral mobility of band 3 in the human erythrocyte membrane. Control by ankyrin-mediated interactions, Biophys. J. 37: 177a.CrossRefGoogle Scholar
  67. Goodman, S., and Branton, D., 1978, Spectrin binding and the control of membrane protein mobility, J. Supramol. Struct. 8: 455–463.PubMedCrossRefGoogle Scholar
  68. Goodman, S. R., and Weidner, S. A., 1980, Binding of spectrin tetramers to human erythrocyte membranes, J. Biol. Chem. 255: 8082–8086.PubMedGoogle Scholar
  69. Goodman, S., Zagon, I., and Kulikowski, R., 1981, Identification of a spectrin-like protein in nonerythroid cells, Proc. Natl. Acad. Sci. USA 78: 7570–7574.PubMedCrossRefGoogle Scholar
  70. Goodman, S. R., Shiffer, K. A., Casoria, L. A., and Eyster, M. E., 1982, Identification of the molecular defect in the erythrocyte membrane skeleton of some kindreds with hereditary spherocytosis, Blood 60: 772–784.PubMedGoogle Scholar
  71. Greenquist, K. C., Shohet, S. B., and Bernstein, S. E., 1978, Marked reduction in spectrin in hereditary spherocytosis in the common house mouse, Blood 51: 1149–1155.PubMedGoogle Scholar
  72. Guidotti, G., 1972, Membrane proteins, Ann. Rev. Biochem. 41: 731–752.PubMedCrossRefGoogle Scholar
  73. Haest, C. W. M., Plasa, G., Kamp, D., and Deuticke, B., 1978, Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane, Biochim. Biophys. Acta 509: 21–32.PubMedCrossRefGoogle Scholar
  74. Hainfield, J. F., and Steck, T. L., 1977, The sub-membrane reticulum of the human erythrocyte: a scanning electron microscope study, J. Supramol. Struct. 6: 301–317.CrossRefGoogle Scholar
  75. Hargreaves, W. R., Giedd, K. N., Verkleij, A., and Branton, D., 1980, Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles, J. Biol. Chem. 255: 11965–11972.PubMedGoogle Scholar
  76. Harris, H. W., and Lux, S. E., 1980, Structural characterization of the phosphorylation sites of human erythrocyte spectrin, J. Biol. Chem. 255: 11512–11520.PubMedGoogle Scholar
  77. Hepler, P., 1980, Membranes in the mitotic apparatus of barley cells, J. Cell Biol. 86: 490–499.PubMedCrossRefGoogle Scholar
  78. Herzog, W., and Weber, K., 1978, Fractionation of brain microtubule-associated proteins: Isolation of two different proteins which stimulate tubulin polymerization in vitro, Eur. J. Biochem. 92: 1–8.PubMedCrossRefGoogle Scholar
  79. Hiller, G., and Weber, K., 1977, Spectrin is absent in various tisse culture cells, Nature 266:181–183. Izant, J. G., Weatherbee, J. A., and McIntosh, J. R., 1982, A microtubule-aq..,-iated protein in the mitotic spindle and the interphase nucleus, Nature 295: 248–250.Google Scholar
  80. Jarrett, H. W., and Penniston, J. T., 1978, Purification of the Ca -stimulated ATPase activator from human erythrocytes. Its membership in the class of Ca’ -binding modulator proteins, J. Biol. Chem. 253: 4676–4682.PubMedGoogle Scholar
  81. Ji, T. H., Kiehm, D. J., and Middaugh, G. R., 1980, Presence of spectrin tetramer on the erythrocyte membrane, J. Biol. Chem. 255: 2990–2993.Google Scholar
  82. Kakiuchi, S., Sobue, K., and Fujita, M., 1981, Purification of a 240,000 M, calmodulin-binding protein from a microsomal fraction of brain, FEBS Lett. 132: 144–148.PubMedCrossRefGoogle Scholar
  83. Kim, H., Binder, L. J., and Rosenbaum, J. L., 1979, The periodic association of MAP2 with brain microtubules in vitro, J. Cell Biol. 80: 266–276.PubMedCrossRefGoogle Scholar
  84. Knowles, W. J., Morrow, J. S., Speicher, D. W., Zarkowsky, H. S., Mohandas, N., Shohet, S. B., and Marchesi, V. T., 1983, Molecular and functional changes in spectrin from patients with hereditary poikilocytosis, J. Clin. Invest. 71: 1867–1877.PubMedCrossRefGoogle Scholar
  85. Kwok, R., and Evans, E., 1981, Thermoelasticity of large lecithin bilayer vesicles, Biophys. J. 35: 637–652.PubMedCrossRefGoogle Scholar
  86. Levine, J., and Willard, M., 1980, The composition and organization of axonally transported proteins in the retinal ganglion cells of the guinea pig, Brain Res. 194: 137–154.PubMedCrossRefGoogle Scholar
  87. Levine, J., and Willard, M., 1981, Fodrin: axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90: 631–643.PubMedCrossRefGoogle Scholar
  88. Levine, J., and Willard, M., 1983, Redistribution of fodrin (a component of the cortical cytoplasm) accompanying capping of cell surface molecules, Proc. Natl. Acad. Sci. USA 80: 191–195.PubMedCrossRefGoogle Scholar
  89. Lin, D. C., and Lin, S., 1979, Actin polymerization induced by motility-related high-affinity cytochalasin binding complex from human erythrocyte membranes, Proc. Natl. Acad. Sci. USA 76: 2345–2349.PubMedCrossRefGoogle Scholar
  90. Lin, D. C., Flanagan, M. D., and Lin, S., 1983, Complexes containing actin and spectrin from erythrocyte and brain, Cell Motility 3: 375–382.PubMedCrossRefGoogle Scholar
  91. Litman, P., Chen, J. H., and Marchesi, V. T., 1978, Spectrin binds to the inner surface of the human red cell membrane via associations with band 4.1–4.2 and 3, J. Supramol. Struct. 8 (suppl. 2): 209.Google Scholar
  92. Litman, D., Hsu, C. J., and Marchesi, V. T., 1980, Evidence that spectrin binds to macromolecular complexes on the inner surface of the red cell membrane, J. Cell Sci. 42: 1–22.PubMedGoogle Scholar
  93. Liu, S. C., and Palek, J., 1979, Cross-linkings between spectrin and band 3 in human erythrocyte membranes, J. Supramol. Struct. 10: 97–109.PubMedCrossRefGoogle Scholar
  94. Liu, S. C., Palek, J., Prchal, J., and Castleberry, R. P., 1981, Altered spectrin dimer-dimer association and instability of membrane skeletons in hereditary pyropoikilocytosis, J. Clin. Invest. 68: 597–605.PubMedCrossRefGoogle Scholar
  95. Liu, S. C., Palek, J., and Prchal, J. T., 1982, Defective spectrin dimer-dimer association in hereditary elliptocytosis, Proc. Natl. Acad. Sci. USA79: 2072–2076.Google Scholar
  96. Lorenz, T., and Willard, M., 1978, Subcellular fractionation of intra-axonally transported polypeptides in the rabbit visual system, Proc. Natl. Acad. Sci. USA 75: 505–509.PubMedCrossRefGoogle Scholar
  97. Luna, E. J., Kidd, G. H., and Branton, D., 1979, Identification by peptide analysis of the spectrinbinding protein in human erythrocytes, J. Biol. Chem. 254: 2526–2532.PubMedGoogle Scholar
  98. Lux, S. E., 1979, Spectrin—actin membrane skeleton of normal and abnormal blood cells, Semin. Hematol. 16: 21–51.PubMedGoogle Scholar
  99. Lux, S. E., 1983, Disorders of the red cell membrane skeleton: Hereditary spherocytosis and herditary elliptocytosis, in: The Metabolic Basis of Inherited Disease ( Stanbury, Wyngaarden, Fredrickson, Goldstein, and Brown, eds.) McGraw—Hill, New York. pp. 1573–1605.Google Scholar
  100. Marchesi, V. T., 1983, The red cell membrane skeleton: recent progress, Blood 61: 1–11.PubMedGoogle Scholar
  101. Marchesi, V. T., and Steers, E., 1968, Selective solubilization of a protein component of the red cell membrane, Science 159: 203–204.PubMedCrossRefGoogle Scholar
  102. Marchesi, V. T., Furthmayr, H., and Tornita, M., 1976, The red cell membrane, Ann. Rev. Biochem. 45: 667–697.PubMedCrossRefGoogle Scholar
  103. Mombers, C., Verkleij, A. J., DeGier, J., and Van Deenen, L. L. M., 1979, The interaction of spectrin-actin and synthetic phospholipids II. The interaction with phosphatidylserine, Biochim. Biophys. Acta 551: 271–281.PubMedGoogle Scholar
  104. Morrow, J. S., and Marchesi, V. T., 1981, Self assembly of spectrin oligomers in vitro: A basis for a dynamic cytoskeleton, J. Cell Biol. 88: 463–468.PubMedCrossRefGoogle Scholar
  105. Morrow, J. S., Speicher, D. W., Knowles, W. J., Hsu, C. J., and Marchesi V. T., 1980, Identification of functional domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 6592–6596.PubMedCrossRefGoogle Scholar
  106. Moskalewski, S., Thyberg, J., Hinek, A., and Friberg, U., 1977, Fine structure of the Golgi complex during mitosis of cartilaginous cells in vitro, Tissue Cell 9: 185–196.PubMedCrossRefGoogle Scholar
  107. Mueller, T. J., and Morrison, M., 1981, Glycoconnectin (PAS2), a membrane attachment site for the human erythrocyte cytoskeleton, in: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances ( W. Kruckeberg, J. Eaton, and G. Brewer, eds.), Liss, New York, pp. 95–112.Google Scholar
  108. Murphy, D. B., and Borisy, G. G., 1975, Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. USA 72: 2696–2700.PubMedCrossRefGoogle Scholar
  109. Murthy, S. N., Liu, T., Kaul, R. K., Kohler, H., and Steck, T. L., 1981, The aldolase-binding site of the human erythrocyte membrane is at the NH2 terminus of band 3, J. Biol. Chem. 256: 11203–11208.PubMedGoogle Scholar
  110. Nakashima, H., Nakagawa, Y., and Makino, S., 1981, Detection of the associated state of membrane proteins by polyacrylamide gradient gel electrophoresis with nondenaturing detergents—application to band 3, Biochim. Biophys. Acta 643: 509–518.PubMedCrossRefGoogle Scholar
  111. Nelson, G. A., Andrews, M. L., and Karnovsky, M. J., 1983, Control of erythrocyte shape by calmodulin, J. Cell Biol. 96: 730–735.PubMedCrossRefGoogle Scholar
  112. Nelson, W. J., and Lazarides, E., 1983, Expression of the subunit of spectrin in nonerythroid cells, Proc. Natl. Acad. Sci. USA 80: 363–367.PubMedCrossRefGoogle Scholar
  113. Nermut, M. L., 1981, Visualization of the “membrane skeleton” in human erythrocytes by freeze-etching, Eur. J. Cell Biol. 25: 265–271.PubMedGoogle Scholar
  114. Nicolson, G. L., 1974, Transmembrane control of the receptors on normal and tumor cells I. Cytoplasmic influence over cell surface components, Biochim. Biophys. Acta 457: 57–108.Google Scholar
  115. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J. Cell Biol. 59: 395–406.PubMedCrossRefGoogle Scholar
  116. Nigg, E., and Cherry, R. J., 1979a, Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements, Nature 277: 493–494.PubMedCrossRefGoogle Scholar
  117. Nigg, E. A., and Cherry, R. J., 1979b, Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane, Biochemistry 18: 3457–3465.PubMedCrossRefGoogle Scholar
  118. Nigg, E. A., and Cherry, R. J., 1980, Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements, Proc. Natl. Acad. Sci. USA 77: 4702–4706.PubMedCrossRefGoogle Scholar
  119. Nigg, E. A., Bron, C., Giradet, M., and Cherry, R. J., 1980, Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking, Biochemistry 19: 1887–1893.PubMedCrossRefGoogle Scholar
  120. Palfrey, C., Schiebler, W., and Greengard, P., 1982, A major calmodulin-binding protein common to various vertebrate tissues, Proc. Natl. Acad. Sci. USA 79: 3780–3784.PubMedCrossRefGoogle Scholar
  121. Palmer, F. B., and Verpoorte, J., 1971, The phosphorus components of solubilized erythrocyte membrane protein, Can. J. Biochem. 49: 337–347.PubMedCrossRefGoogle Scholar
  122. Pasval, G., Wainscoat, J. S., and Weatherall, D. J., 1982, Erythrocytes deficient in glycophorin resist invasion by the malarial parasite Plasmodium falciparum, Nature 297: 64–66.CrossRefGoogle Scholar
  123. Patel, V. P., and Fairbanks, G., 1981, Spectrin phosphorylation and shape change of human erythrocyte ghosts, J. Cell Biol. 88: 430–440.PubMedCrossRefGoogle Scholar
  124. Perkins, M., 1981, Inhibitory effects of erythrocyte membrane proteins on the in vitro invasion of the human malarial parasite (Plasmodium falciparum) into its host cell, J. Cell Biol. 90: 563567.Google Scholar
  125. Peters, R., Peters, J., Tews, K. H., and Bahr, W., 1974, A microfluorimetric study of translational diffusion in erythrocyte membranes, Biochim. Biophys. Acta 367: 282–294.PubMedCrossRefGoogle Scholar
  126. Pinder, J. C., and Gratzer, W. B., 1983, Structural and dynamic states of actin in the erythrocyte, J. Cell Biol. 96: 768–775.PubMedCrossRefGoogle Scholar
  127. Pinder, J. C., Ungewickell, E., Bray, D., and Gratzer, W. B., 1978, The spectrin-actin complex and erythrocyte shape, J. Supramol. Struct. 8: 439–445.PubMedCrossRefGoogle Scholar
  128. Pinto da Silva, P., and Nicolson, G. L., 1974, Freeze—etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes, Biochim. Biophys. Acta 363: 311–319.CrossRefGoogle Scholar
  129. Pollard, T. D., 1983, Meeting Highlights, Critique and Perspectives Cell Motility 3: 693–697.CrossRefGoogle Scholar
  130. Ralston, G. B., 1978, Physical—chemical studies of spectrin, J. Supramol. Struct. 8: 361–373.PubMedCrossRefGoogle Scholar
  131. Rand, R. P., and Burton, A. C., 1964, Mechanical properties of the red cell membrane I. Membrane stiffness and intracellular pressure, Biophys. J. 4: 115–135.PubMedCrossRefGoogle Scholar
  132. Repasky, E., Granger, B., and Lazarides, E., 1982, Widespread occurrence of avian spectrin in nonerythroid cells, Cell 29: 821–833.PubMedCrossRefGoogle Scholar
  133. Russell, E. S., 1979, Hereditary anemia of the mouse: A review for geneticists, Adv. Genetics 20: 357–459.CrossRefGoogle Scholar
  134. Salhany, J. M., and Shaklai, N., 1979, Functional properties of human hemoglobin bound to the erythrocyte membrane, Biochemistry 18: 893–899.PubMedCrossRefGoogle Scholar
  135. Salhany, J. M., Cordes, K. A., and Gaines, E. D., 1980, Light-scattering measurements of hemoglobin binding to the erythrocyte membrane. Evidence for transmembrane effects related to a disulfonic stilbene binding to band 3, Biochemistry 19: 1447–1454.PubMedCrossRefGoogle Scholar
  136. Sattilaro, R. F., Dentier, W. L., and LeCluyse, E. L., 1981, Microtubule-associated proteins (MAPs) and the organization of actin filaments in vitro, J. Cell Biol. 90: 467–473.PubMedCrossRefGoogle Scholar
  137. Sheetz, M. P., 1979, Integral membrane protein interaction with triton cytoskeletons of erythrocytes, Biochim. Biophys. Acta 557: 122–134.CrossRefGoogle Scholar
  138. Sheetz, M. P., and Sawyer, D., 1978, Triton shells of intact erythrocytes, J. Supramol. Struct. 8: 399–412.PubMedCrossRefGoogle Scholar
  139. Sheetz, M. P., and Singer, S. J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes I. The role of the spectrin complex, J. Cell Biol. 73: 638–646.Google Scholar
  140. Sheetz, M. P., Painter, R. G., and Singer, S. J., 1976, Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells, Biochemistry 15: 4486–4492.PubMedCrossRefGoogle Scholar
  141. Sheetz, M. P., Schindler, M., and Koppel, D., 1980, Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes, Nature 285: 510–512.PubMedCrossRefGoogle Scholar
  142. Sherline, P., Lee, Y. C., and Jacobs, L., 1977, Binding of microtubules to pituitary secretory granules and secretory granule membranes, J. Cell Biol. 72: 380–389.PubMedCrossRefGoogle Scholar
  143. Shimo—Oka, T., and Watanabe, Y., 1981, Stimulation of actomyosin Mg’ -ATPase activity by a brain microtubule-associated protein fraction. High-molecular-weight actin-binding protein is the stimulating factor, J. Biochem. 90: 1297–1307.Google Scholar
  144. Shohet, S. B., 1979, Reconstitution of spectrin deficient mouse erythrocyte membranes, J. Clin. Invest. 64: 483–493.PubMedCrossRefGoogle Scholar
  145. Shotton, D. M., Thompson, K., Wofsy, L., and Branton, D., 1978, Appearance and distribution of surface protein of the human erythrocyte membrane, J. Cell Biol. 76: 512–531.PubMedCrossRefGoogle Scholar
  146. Shotton, D. M., Burke, B. E., and Branton, D., 1979, The molecular structure of human erythrocyte spectrin, J. Mol. Biol. 131: 303–329.PubMedCrossRefGoogle Scholar
  147. Siegel, D. L., and Branton, D., 1982, Human erythrocyte band 4.9, J. Cell Biol. 95: 265a.Google Scholar
  148. Singer, S. J., 1974, The molecular organization of membranes, Ann. Rev. Biochem. 43: 805–833.PubMedCrossRefGoogle Scholar
  149. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720–731.PubMedCrossRefGoogle Scholar
  150. Sloboda, R. D., and Dickersin, K., 1980, Structure and composition of the cytoskeleton of nucleated erythrocytes. I. The presence of microtubule-associated protein 2 in the marginal band, J. Cell Biol. 87: 170–179.PubMedCrossRefGoogle Scholar
  151. Smith, B. A., Clark, W. R., and McConnell, H. M., 1979, Anisotropic molecular motion on cell surfaces, Proc. Natl. Acad. Sci. USA 76: 5641–5644.PubMedCrossRefGoogle Scholar
  152. Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981, Calmodulin-binding protein of erythrocyte cytoskeleton, Biochem. Biophys. Res. Comm. 100: 1063–1070.PubMedCrossRefGoogle Scholar
  153. Sobue, K., Kanda, K., and Kakiuchi, S., 1982, Solubilization and partial purification of protein kinase systems from brain membranes that phosphorylate calspectin. A spectrin-like calmodulinbinding protein (fodrin), FEBS Leu. 150: 185–190.CrossRefGoogle Scholar
  154. Speicher, D. W., Morrow, J. C., Knowles, W. J., and Marchesi, V. T., 1980, Identification of proteolytically resistant domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 5673–5677.PubMedCrossRefGoogle Scholar
  155. Speicher, D. W., Morrow, J. S., Knowles, W. J., and Marchesi, V. T., 1982, A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains, J. Biol. Chem. 257: 9093–9101.PubMedGoogle Scholar
  156. Spiegel, J. E., Southwick, F. S., Lux, S. E., and Stossel, T. P., 1982, Erythrocyte protein 4.1 is immunologically related to acamentin from polymorphonuclear leukocytes, Blood 60: 25a.Google Scholar
  157. Steck, T. L., 1972, Cross-linking the major proteins of the isolated erythrocyte membrane, J. Mol. Biol. 66: 295–305.PubMedCrossRefGoogle Scholar
  158. Steck, T. L., 1974, Organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  159. Steck, T. L., 1978, The band 3 protein of the human red cell membrane: a review, J. Supramol. Struct. 8: 311–324.PubMedCrossRefGoogle Scholar
  160. Steck, T. L., Ramos, B., and Strapazon, E., 1976, Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane, Biochemistry 15: 1154–1161.CrossRefGoogle Scholar
  161. Stephens, R. E., 1977, Major protein differences in cilia and flagella: Evidence for a membrane-associated tubulin, Biochemistry 16: 2047–2058.PubMedCrossRefGoogle Scholar
  162. Tank, D. W., Wu, E. S., and Webb, W. W., 1982, Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints, J. Cell Biol. 92: 207–212.PubMedCrossRefGoogle Scholar
  163. Tchernia, G., Mohandas, N., and Shohet, S. B., 1981, Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis, J. Clin. Invest. 68: 454–460.Google Scholar
  164. Tilney, L. G., and Detmers, P., 1975, Actin in erythrocyte ghosts and its association with spectrin, J. Cell Biol. 66: 508–520.PubMedCrossRefGoogle Scholar
  165. Tokuyasu, K. T., Schekman, R., and Singer, S. J., 1979, Domains of receptor mobility and endocytosis in the membranes of neonatal human erythrocytes and reticulocytes are deficient in spectrin, J. Cell Biol. 80: 481–486.PubMedCrossRefGoogle Scholar
  166. Tsai, T. H., Murthy, S. N., and Steck, T. L., 1982, Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 257: 1438–1442.PubMedGoogle Scholar
  167. Tyler, J. M., Hargreaves, W. R., and Branton, D., 1979, Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1, Proc. Natl. Acad. Sci. USA 76: 5192–5196.PubMedCrossRefGoogle Scholar
  168. Tyler, J. M., Anderson, J. M., and Branton, D., 1980a, Structural comparison of several actin-binding macromolecules, J. Cell Biol. 85: 489–495.PubMedCrossRefGoogle Scholar
  169. Tyler, J. M., Reinhardt, B. N., and Branton, D., 1980b, Associations of erythrocyte membrane proteins—binding of purified bands 2.1 and 4.1 to spectrin, J. Biol. Chem. 255: 7034–7039.PubMedGoogle Scholar
  170. Unanue, E. R., and Karnovsky, M. J., 1973, Redistribution and fate of Ig complexes on surface of B lymphocytes: Functional implications and mechanisms, Transplant Rev. 14: 184–210.PubMedGoogle Scholar
  171. Ungewickell, E., and Gratzer, W., 1978, Self-association of human spectrin. A thermodynamic and kinetic study, Eur. J. Biochem. 88: 379–385.PubMedCrossRefGoogle Scholar
  172. Ungewickell, E., Bennett, P. M., Calvert, R., Ohanian, V., and Gratzer, W. B., 1979, In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte, Nature 280: 811–814.Google Scholar
  173. VanDeurs, B., and Behnke, 0., 1973, The microtubule marginal band of mammalian red blood c.àls, Z. Anat. Entw. Gesch. 143: 43–47.CrossRefGoogle Scholar
  174. Voter, W. A., and Erickson, H. P., 1982, Electron microscopy of MAP2 (microtubule-associated protein 2), J. Ultrastruct. Res. 80: 374–382.PubMedCrossRefGoogle Scholar
  175. Wang, K., and Richards, F. M., 1974, An approach to nearest neighbor analysis of membrane proteins. Application to the human erythrocyte membrane of a method employing cleavable cross-linkages, J. Biol. Chem. 249: 8005–8018.PubMedGoogle Scholar
  176. Weatherbee, J. A., Luftig, R. G., and Weihing, R. R., 1980, Purification and reconstitution of HeLa cell microtubules, Biochemistry 19: 4116–4123.PubMedCrossRefGoogle Scholar
  177. Weed, R. I., La Celle, P. L., Merrill, E., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795–809.PubMedCrossRefGoogle Scholar
  178. Wolf, L. C., John, K. M., Falcone, J. C., Byrne, A. M., and Lux, S. E., 1982, A genetic defect in the binding of protein 4.1 to spectrin in a kindred with hereditary spherocytosis, N. Engl. J. Mad. 307: 1367–1374.CrossRefGoogle Scholar
  179. Wu, E. S., Tank, D. W., and Webb, W. W., 1982, Unconstrained lateral diffusion of concanavilin A receptors on bulbous lymphocytes, Proc. Natl. Acad. Sci. USA 79: 4962–4966.PubMedCrossRefGoogle Scholar
  180. Yu, J., and Branton, D., 1976, Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid; effects of spectrin-actin association, Proc. Natl. Acad. Sci. USA 73: 3891–3895.PubMedCrossRefGoogle Scholar
  181. Yu, J., and Goodman, S. R., 1979, Syndeins: The spectrin binding protein(s) of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 76: 2340–2344.PubMedCrossRefGoogle Scholar
  182. Yu, J., and Steck, T. L., 1975, Associations of band 3, the predominant polypeptide of the human erythrocyte, J. Biol. Chem. 250: 9176–9184.Google Scholar
  183. Yu, J., Fischman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipide from red blood cell membranes by nonionic detergents, J. Supramol. Struct. 1: 233–248.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Vann Bennett
    • 1
  1. 1.Department of Cell Biology and AnatomyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations