Advertisement

The Interactions of Cells with Extracellular Matrix Components

  • Kenneth M. Yamada
  • Steven K. Akiyama

Abstract

The interactions of extracellular materials with the cell surface are important facets of the regulation of cell morphology and metabolism. Although it is not simple to unravel the complex actions and interrelationships of these molecules comprising the extracellular microenvironment of cells, their importance is now documented by a rapidly expanding literature (for recent reviews, see Hay, 1981; Chen, 1981; Kleinman et al., 1981; Aplin and Hughes, 1982; Grinnell, 1983; Yamada, 1983a,b). Many of the major molecules that constitute extracellular matrices have been purified. Some of the isolated molecules can have dramatic regulatory effects on cell morphology and polarity, organization of the cytoskeleton, and production of differentiated cell products. For example, the addition of purified cellular fibronectin to cells deficient in fibronectin can restore a more normal cell shape, adhesiveness, cell surface architecture, and organization of intracellular actin microfilaments (Yamada et al.,1976a,b; Willingham et al., 1977; Ali et al., 1977). If certain embryonic epithelial cells are stripped of their basal lamina, they cease morphogenesis and begin blebbing (Banerjee et al.,1977; Sugrue and Hay, 1981); treatment with purified fibronectin, laminin, or collagen can sometimes restore normal cell surface morphology and organization of microfilaments (Sugrue and Hay, 1981, 1982). Mammary epithelial cells removed from their normal environment regain the ability to proliferate and to synthesize a set of differentiated products and a basal lamina if cultured within an artificial collagen gel (e.g., see Suard et al., 1983, and references therein). These and many other examples of the regulatory effects of extracellular macromolecules on embryonic differentiation, cell motility, and growth demonstrate the importance of interactions of the cell surface with the extracellular milieu.

Keywords

Hyaluronic Acid Neural Crest Cell Triple Helix Plasma Fibronectin Neural Crest Cell Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, E. D., and Ayers, S. E., 1979, The localization and synthesis of some collagen types in developing mouse embryos, Cell 16: 953–965.PubMedCrossRefGoogle Scholar
  2. Adler, R., Manthorpe, M., Skaper, S., and Varon, S., 1981, Polyornithine-bound neurite-promoting factors. Culture sources and responsive neurons, Brain Res. 206: 127–144.CrossRefGoogle Scholar
  3. Akers, R. M., Mosher, D. F., and Lilien, J. E., 1981, Promotion of retinal neurite outgrowth by substratum-bound fibronectin, Dey. Biol. 86: 179–188.CrossRefGoogle Scholar
  4. Akiyama, S. K., and Yamada, K. M., 1984, Comparisons of evolutionarily distinct fibronectins: Evidence for the origins of plasma and fibroblast cellular fibronectins from a single gene, submitted for publication.Google Scholar
  5. Albini, A., Richter, H., and Pontz, B. F., 1983, Localization of the chemotactic domain in fibronectin, FEBS Len. 156: 222–226.CrossRefGoogle Scholar
  6. Alexander, S. S., Jr., Colonna, G., Yamada, K. M., Pastan, I., and Edelhoch, H., 1978, Molecular properties of a major cell surface protein from chick embryo fibroblasts, J. Biol. Chem. 253: 5820–5824.PubMedGoogle Scholar
  7. Alexander, S. S., Jr., Colonna, G., and Edelhoch, H., 1979, The structure and stability of human plasma cold-insoluble globulin, J. Biol. Chem. 254: 1501–1505.PubMedGoogle Scholar
  8. Ali, I. U., and Hynes, R. O., 1978, Effects of LETS glycoprotein on cell motility, Cell 14: 439–446.PubMedCrossRefGoogle Scholar
  9. Ali, I. U., Mautner, V., Lanza, R., and Hynes, R. O., 1977, Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein, Cell 11: 115–126.PubMedCrossRefGoogle Scholar
  10. Aplin, J. D., and Hughes, R. C., 1981, Cell adhesion on model substrata: Threshold effects and receptor modulation, J. Cell Sci. 50: 89–103.PubMedGoogle Scholar
  11. Aplin, J. D., and Hughes, R. C., 1982, Complex carbohydrates of the extracellular matrix. Structure, interactions and biological roles, Biochim. Biophys. Acta 694: 375–418.PubMedCrossRefGoogle Scholar
  12. Aplin, J. D., Hughes, R. C., Jaffe, C. L., and Sharon, N., 1981, Reversible cross-linking of cellular components of adherent fibroblasts to fibronectin and lectin-coated substrata, Exp. Cell Res. 134: 488–494.PubMedCrossRefGoogle Scholar
  13. Armstrong, P. B., and Armstrong, M. T., 1981, Immunofluorescent histological studies of the role of fibronectin in the expression of the associative preferences of embryonic tissues, J. Cell Sci. 50: 121–133.PubMedGoogle Scholar
  14. Armstrong, P. B., and Armstrong, M. T., 1984, A role for fibronectin in cell sorting, J. Cell Sci.,in press.Google Scholar
  15. Arneson, M. A., Hammerschmidt, D. C., Furcht, L. T., and King, R. A., 1980, A new form of Ehlers-Danlos syndrome. Fibronectin corrects defective platelet function, JAMA 244: 144–147.PubMedCrossRefGoogle Scholar
  16. Atherton, B. T., and Hynes, R. O., 1981, A difference between plasma and cellular fibronectins located with monoclonal antibodies, Cell 25: 133–141.PubMedCrossRefGoogle Scholar
  17. Avnur, Z., and Geiger, B., 1981, The removal of extracellular fibronectin from areas of cell-substrate contact, Cell 25: 121–132.PubMedCrossRefGoogle Scholar
  18. Bächinger, H. P., Doege, K. J., Petschek, J. P., Fessier, L. I., and Fessier, J. H., 1982, Structural implications from an electron microscopic comparison of procollagen I, pC-collagen I, pro-collagen IV, and a Drosophila procollagen, J. Biol. Chem. 257: 14590–14592.PubMedGoogle Scholar
  19. Balian, G., Click, E. M., Crouch, E., Davidson, J. M., and Bornstein, P., 1979a, Isolation of a collagen-binding fragment from fibronectin and cold-insoluble globulin, J. Biol. Chem. 254: 1429–1432.PubMedGoogle Scholar
  20. Balian, G., Crouch, E., Click, E. M., Carter, W. G., and Bornstein, P., 1979b, Comparison of the structures of human fibronectin and plasma cold-insoluble globulin, J. Supramol. Struct. 12: 505–516.PubMedCrossRefGoogle Scholar
  21. Banerjee, S. D., Cohn, R. H., and Bernfield, M. R., 1977, Basal lamina of embryonic salivary epithelia: Production by the epithelium and role in maintaining lobular morphology, J. Cell Biol. 73: 445–463.PubMedCrossRefGoogle Scholar
  22. Bard, J. B. L., and Hay, E. D., 1975, The behavior of fibroblasts from the developing avian cornea, J. Cell Biol. 67: 400–418.PubMedCrossRefGoogle Scholar
  23. Barnes, D., and Sato, G., 1980, Serum-free medium. A review, Cell 22: 649–655.PubMedCrossRefGoogle Scholar
  24. Barnes, D. W., and Silnutzer, J., 1983, J. Biol. Chem. 258: 12548–12552.PubMedGoogle Scholar
  25. Barnes, D., Wolfe, R., Serrero, G., McClure, D., and Sato, G., 1980, Effects of a serum spreading factor on growth and morphology of cells in serum-free medium, J. Supramol. Struct. 14: 47–63.PubMedCrossRefGoogle Scholar
  26. Barnes, D. W., Silnutzer, J., See, C., and Shaffer, M., 1983, Characterization of human serum spreading factor with monoclonal antibody, Proc. Natl. Acad. Sci. USA 80: 1362–1366.PubMedCrossRefGoogle Scholar
  27. Baron Van Evercooren, A., Kleinman, H. K., Ohno, S., Marangos, P., Schwartz, J. P., and Dubois—Dalcq, M. E., 1982, Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures, J. Neurosci. Res. 8: 179–193.CrossRefGoogle Scholar
  28. Bennett, J. S., Vilaire, G., and Cines, D. B., 1982, Identification of the fibrinogen receptor on human platelets by photoaffinity labeling, J. Biol. Chem. 257: 8049–8054.PubMedGoogle Scholar
  29. Bentz, H., Morris, N. P., Murray, L. W., Sakai, L. Y., Hollister, D. W., and Burgeson, R. E., 1983, Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain, Proc. Natl. Acad. Sci. USA 80: 3168.PubMedCrossRefGoogle Scholar
  30. Benya, P. D., and Shaffer, J. D., 1982, Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels, Cell 30: 215–224.PubMedCrossRefGoogle Scholar
  31. Bernard, B. A., Olden, K., and Yamada, K. M., 1982a, Carbohydrates protect the collagen binding domain of fibronectin against proteolytic degradation, in: Extracellular Matrix ( S. Hawkes and J. L. Wang, eds.), Academic Press, New York, pp. 225–229.Google Scholar
  32. Bernard, B. A., Yamada, K. M., and Olden, K., 1982b, Carbohydrates selectively protect a specific domain of fibronectin against proteases, J. Biol. Chem. 257: 8549–8554.PubMedGoogle Scholar
  33. Bernard, B. A., De Luca, L. M., Hassell, J. R., Yamada, K. M., and Olden, K., 1984, Retinoic acid alters the proportion of high mannose to complex type oligosaccharides on fibronectin secreted by cultured chondrocytes, J. Biol. Chem., 259: 5310–5315.PubMedGoogle Scholar
  34. Bernfield, M., 1980, Organization and remodeling of the extra-cellular matrix in morphogenesis, in: Morphogenesis and Pattern Formation: Implications for Normal and Abnormal Development ( L. L. Brinkley, B. M. Carlson, and T. G. Connelly, eds.), Raven Press, New York.Google Scholar
  35. Bing, D. H., Almeda, S., Isliker, H., Lahav, J., and Hynes, R. O., 1982, Fibronectin binds to the Clq component of complement, Proc. Natl. Acad. Sci. USA 79: 4918–4201.CrossRefGoogle Scholar
  36. Birchmeier, C., Kreis, T. E., Eppenberger, H. M., Winterhalter, K. H., and Birchmeier, W., 1980, Corrugated attachment membrane in WI-38 fibroblasts: Alternating fibronectin fibers and actin-containing focal contacts, Proc. Natl. Acad. Sci. USA 77: 4108–4112.PubMedCrossRefGoogle Scholar
  37. Bitterman, P. B., Rennard, S. I., Adelberg, S., and Crystal, R. G., 1983, Role of fibronectin as a growth factor for fibroblasts, J. Cell Biol. 97: 1925–1927.PubMedCrossRefGoogle Scholar
  38. Bornstein, P., and Sage, H., 1980, Structurally distinct collagen types, Ann. Rev. Biochem. 49: 957–1003.PubMedCrossRefGoogle Scholar
  39. Boucaut, J. C., and Darribere, T., 1983, Presence of fibronectin during early embryogenesis in amphibian Pleurodeles waltlii, Cell Diff. 12: 77–83.CrossRefGoogle Scholar
  40. Brandts, J. F., and Jacobson, B. S., 1983, A general mechanism for transmembrane signalling, based on clustering, in: Survey and Synthesis of Pathology Research, Volume 2, S. Carter AG, Basel, pp. 107–114.Google Scholar
  41. Briles, E. I. B., 1982, Selection of a substratum-specific adhesion variants of rat hepatoma (HTC) cells, in: Extracellular Matrix ( S. Hawkes, and J. L. Wang, eds.), Academic Press, New York, pp. 115–119.Google Scholar
  42. Briles, E. B., and Haskew, N. B., 1982, Isolation of cloned variants of a rat hepatoma cell line with altered attachment to collagen, but normal attachment to fibronectin, Exp. Cell Res. 138: 436PubMedCrossRefGoogle Scholar
  43. Bronner-Fraser, M. E., 1982, Distribution of latex beads and retinal pigment epithelial cells along the ventral neural crest pathway, Dev. Biol. 91: 50–63.PubMedCrossRefGoogle Scholar
  44. Brown, J. R., 1976, Atlas of Protein Sequence and Structure, Volume 5 (M. O. Dayhoff, ed.), National Biomedical Research Foundation, Washington, D. C., pp. 509–524.Google Scholar
  45. Burgeson, R. E., 1982, Genetic heterogeneity of collagens, J. Invest. Dermatol. 79: 25s - 30s.PubMedCrossRefGoogle Scholar
  46. Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19: 587–595.PubMedCrossRefGoogle Scholar
  47. Carlsson, R., Engvall, E., Freeman, A., and Ruoslahti, E., 1981, Laminin and fibronectin in cell adhesion: Enhanced adhesion of cells from regenerating liver to laminin, Proc. Natl. Acad. Sci. USA, 78: 2403–2406.PubMedCrossRefGoogle Scholar
  48. Cassiman, J. J., Van Der Schueren, B., Van Leuven, F., and Van Den Berghe, H., 1982, Qualitative and quantitative differences in spreading of human fibroblasts on various protein coats. Modulation of treatment of the cells with amines, J. Cell Sci. 54: 79–95.PubMedGoogle Scholar
  49. Chen, L. B. (ed.), 1981, Oncology Overview: Selected Abstracts on Fibronectin and Related Transformation-Sensitive Cell Surface Proteins, International Cancer Research Data Bank, National Cancer Institute, Bethesda, Maryland.Google Scholar
  50. Chen, L. B., Murray, A., Segal, R. A., Bushnell, A., and Walsh, M. L., 1978, Studies on intercellular LETS glycoprotein matrices, Cell 14: 377–391.PubMedCrossRefGoogle Scholar
  51. Chen, W. T., and Singer, S. J., 1980, Fibronectin is not present in the focal adhesions formed between normal cultured fibroblasts and their substrata, Proc. Natl. Acad. Sci. USA 77: 7318–7322.PubMedCrossRefGoogle Scholar
  52. Chen, W. T., and Singer, S. J., 1982, Immunoelectron microscopic studies of the sites of cell—substratum and cell-cell contacts in cultured fibroblasts, J. Cell Biol. 95: 205–222.PubMedCrossRefGoogle Scholar
  53. Chiang, T. M., and Kang, A. H., 1976, Binding of chick skin collagen al chain by isolated membranes from human platelets, J. Biol. Chem. 251: 6347–6351.PubMedGoogle Scholar
  54. Chiang, T. M., and Kang, A. H., 1982, Isolation and purification of collagen al(I) receptor from human platelet membrane, J. Biol. Chem. 257: 7581–7586.PubMedGoogle Scholar
  55. Chiquet, M., Puri, E. C., and Turner, D. C., 1979, Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum, J. Biol. Chem. 254: 5475–5482.PubMedGoogle Scholar
  56. Chiquet, M., Eppenberger, H. M., and Turner, D. C., 1981, Muscle morphogenesis: Evidence for an organizing function of exogenous fibronectin, Dev. Biol. 88: 220–235.PubMedCrossRefGoogle Scholar
  57. Chung, A. E., Jaffe, R., Freeman, I. L., Vergnes, J. P., Braginski, J. E., and Carlin, B., 1979, Properties of a basement membrane-related glycoprotein synthesized in culture by a mouse embryonal carcinoma-derived cell line, Cell 16: 277–287.PubMedCrossRefGoogle Scholar
  58. Clark, C. C., and Kefalides, N. A., 1982, Partial characterization of collagenous and noncollagenous basement membrane proteins synthesized by the 14.5-day rat embryo parietal yolk sac in vitro, Conn. Tiss. Res. 10: 303–318.CrossRefGoogle Scholar
  59. Clark, R. A., Lanigan, J. M., Dellapelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization, J. Invest. Dermatol. 79: 264–269.PubMedCrossRefGoogle Scholar
  60. Collins, F., 1980, Neurite outgrowth induced by the substrate associated material from nonneuronal cells, Dev. Biol. 79: 247–252.PubMedCrossRefGoogle Scholar
  61. Colvin, R. B., Gardner, P. I., Roblin, R. O., Verderber, E. L., Lanigan, J. M., and Mosesson, M. W., 1979, Cell surface fibrinogen-fibrin receptors on cultured human fibroblasts. Association with fibronectin (cold insoluble globulin, LETS protein) and loss in SV40 transformed cells, Lab. Invest. 41: 464–473.PubMedGoogle Scholar
  62. Cooper, A. R., Kurkinen, M., Taylor, A., and Hogan, B. L. M., 1981, Studies on the biosynthesis of laminin by murine parietal endoderm cells, Eur. J. Biochem. 119: 189–197.PubMedCrossRefGoogle Scholar
  63. Cossu, G., and Warren, L., 1983, Lactosaminoglycans and heparan sulfate are covalently bound to fibronectins synthesized by mouse stem teratocarcinoma cells, J. Biol. Chem. 258: 5603–5607.PubMedGoogle Scholar
  64. Cossu, G., Andrews, P. W., and Warren, L., 1983, Covalent binding of lactosaminoglycans and heparan sulfate to fibronectin synthesized by a human teratocarcinoma cell line, Biochem. Biophys. Res. Comm. 111: 952–957.PubMedCrossRefGoogle Scholar
  65. Couchman, J. R., Rees, D. A., Green, M. R., and Smith, C. G., 1982, Fibronectin has a dual role in locomotion and anchorage of primary chick fibroblasts and can promote entry into the division cycle, J. Cell Biol. 93: 402–410.PubMedCrossRefGoogle Scholar
  66. Couchman, J. R., Höök, M., Rees, D. A., and Timpl, R., 1983, Adhesion, growth, and matrix production of fibroblasts on laminin substrates, J. Cell Biol. 96: 177–183.PubMedCrossRefGoogle Scholar
  67. Coughlin, M. D., 1984, Growth factors regulating autonomic nerve development, Adv. Cell. Neurobiol., in press.Google Scholar
  68. Coughlin, M. D., Bloom, E. M., and Black, I. B., 1981, Characterization of a neuronal growth factor from mouse heart-cell-conditioned medium, Dev. Biol. 82: 56–68.PubMedCrossRefGoogle Scholar
  69. Critchley, D. R., England, M. A., Wakely, J., and Hynes, R. O., 1979, Distribution of fibronectin in the ectoderm of gastrulating chick embryos, Nature 280: 498–500.PubMedCrossRefGoogle Scholar
  70. Curtis, A. S. G., Forrester, J. V., McInnes, C., and Lawrie, F., 1983, The adhesion of cells to polystyrene surfaces, J. Cell Biol. 97: 1500–1506.PubMedCrossRefGoogle Scholar
  71. Damsky, C. H., Knudsen, K. A., Dorio, R. J., and Buck, C. A., 1981, Manipulation of cell-cell and cell-substrate interactions in mouse mammary tumor epithelial cells using broad spectrum antisera, J. Cell Biol. 89: 173–184.PubMedCrossRefGoogle Scholar
  72. Del Rosso, M., Cappelletti, R., Viti, M., Vannucchi, S., and Chiarugi, V., 1981, Binding of the basement-membrane glycoprotein laminin to glycosaminoglycans. An affinity-chromatography study, Biochem. J. 199: 699–704.PubMedGoogle Scholar
  73. Dessau, W., Adelmann, B. C., Timpl, R., and Martin, G. R., 1978, Identification of the sites in collagen alpha-chains that bind serum anti-gelatin factor (cold-insoluble globulin), Biochem. J. 169: 55–59.PubMedGoogle Scholar
  74. Duband, J. L., and Thiery, J. P., 1982a, Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration, Del. Biol. 93: 308–323.CrossRefGoogle Scholar
  75. Duband, J. L., and Thiery, J. P., 1982b, Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation, Del. Biol. 94: 337–350.CrossRefGoogle Scholar
  76. Duncan, K. G., Fessier, L. I., Bächinger, H. P., and Fessier, J. H., 1983, Procollagen IV association to tetramers, J. Biol. Chem. 258: 5869–5877.PubMedGoogle Scholar
  77. Ekblom, P., Alitalo, K., Vaheri, A., Timpl, R., and Saxen, L., 1980, Induction of a basement membrane glycoprotein in embryonic kidney: Possible role of laminin in morphogenesis, Proc. Natl. Acad. Sci. USA 77: 485–489.PubMedCrossRefGoogle Scholar
  78. Elsdale, T. R., and Bard, J. B. L., 1972, Collagen substrata for studies on cell behavior, J. Cell Biol. 41: 298–311.CrossRefGoogle Scholar
  79. Emmerling, M. R., Johnson, C. D., Mosher, D. F., Lipton, B. H., and Lilien, J. E., 1981, Cross-linking and binding of fibronectin with asymmetric acetylcholinesterase, Biochemistry 20: 3242–3247.PubMedCrossRefGoogle Scholar
  80. Enat, R., Jefferson, D. M., Ruiz-Opazo, N., Gatmaitan, Z., Leinwand, L., and Reid, L. M., 1983, Hepatocyte proliferation in vitro: Its dependence on the use of serum-free, hormonally defined medium and substrata of extracellular matrix, Proc. Natl. Acad. Sci. USA 81: 1411–1415.CrossRefGoogle Scholar
  81. Engel, J., Odermatt, E., Engel, A., Madri, J. A., Furthmayr, H., Rohde, H., and Timpl, R., 1981, Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix, J. Mol. Biol. 150: 97–120.PubMedCrossRefGoogle Scholar
  82. Engvall, E., and Ruoslahti, E., 1977, Binding of soluble form of fibroblast surface protein, fibronectin, to collagen, Int. J. Cancer 20: 1–5.PubMedCrossRefGoogle Scholar
  83. Engvall, E., and Ruoslahti, E., 1983, Cell adhesion, protein binding, and antigenic properties of laminin, Coll. Rel. Res. 3: 359–369.CrossRefGoogle Scholar
  84. Engvall, E., Ruoslahti, E., and Miller, E. J., 1978, Affinity of fibronectin to collagens of different genetic types and to fibrinogen, J. Exp. Med. 147: 1584–1595.PubMedCrossRefGoogle Scholar
  85. Engvall, E., Krusius, T., Wewer, U., and Ruoslahti, E., 1983, Laminin from rat yolk sac tumor: Isolation, partial characterization, and comparison with mouse laminin, Arch. Biochem. Biophys. 222: 649–656.PubMedCrossRefGoogle Scholar
  86. Erickson, H. P., and Carrell, N. A., 1983, Fibronectin in extended and compact conformations: electron microscopy and sedimentation analysis, J. Biol. Chem. 257: 14539–14544.Google Scholar
  87. Espersen, F., and Clemmensen, I., 1982, Isolation of fibronectin-binding protein from Staphylococcus aureus, Infect. Immun. 37: 526–531.Google Scholar
  88. Fagan, J. B., Sobel, M. E., Yamada, K. M., DeCrombrugghe, B., and Pastan, I., 1981, Effects of transformation on fibronectin gene expression using cloned fibronectin cDNA, J. Biol. Chem. 526: 520–525.Google Scholar
  89. Farmer, S. R., Ben-Ze’ev, A., Benecke, B.-J., and Penman, S., 1978, Altered Translatability of messenger RNA from suspended anchorage-dependent fibroblasts: Reversal upon cell attachment to a surface, Cell 15: 627–637.PubMedCrossRefGoogle Scholar
  90. Farquhar, M. G., 1981, The glomerular basement membrane: A selective macromolecular filter, in: Cell Biology of Extracellular Matrix ( E. D. Hay, ed.), Plenum Press, New York, pp. 335–378.CrossRefGoogle Scholar
  91. Fessier, J. H., and Fessier, L. I., 1978, Biosynthesis of procollagen, Ann. Rev. Biochem. 47: 129–162.CrossRefGoogle Scholar
  92. Fleischmajer, R., Timpl, R., Tuderman, L., Raisher, L., Wiestner, M., Perlisch, J., and Graves, P. N., 1981, Ultrastructural identification of extension aminopropeptides of type I and III collagens in human skin. Proc. Natl. Acad. Sci. USA 78: 7360–7364.PubMedCrossRefGoogle Scholar
  93. Foellmer, H. G., Madri, J. A., and Furthmayr, H., 1983, Monoclonal antibodies to Type IV collagen: Probes for the study of structure and function of basement membranes, Lab. Invest. 48: 639–649.PubMedGoogle Scholar
  94. Foidart, J. M., Berman, J. J., Paglia, L., Rennard, S., Abe, S., Perantoni, A., and Martin, G. R., 1980, Synthesis of fibronectin, laminin, and several collagens by a liver-derived epithelial line, Lab. Invest. 42: 525–532.Google Scholar
  95. Folkman, J., and Greenspan, H. P., 1975, Influence of geometry on control of cell growth, Biochim. Biophys. Acta 417: 211–236.PubMedGoogle Scholar
  96. Foster, C. S., Smith, C. A., Dinsdale, E. A., Monaghan, P., and Neville, A. M., 1983, Human mammary gland morphogenesis in vitro: The growth and differentiation of normal breast epithelium in collagen gel cultures defined by electron microscopy, monoclonal antibodies and autoradiography, Dev. Biol. 96: 197–216.PubMedCrossRefGoogle Scholar
  97. Fox, C. H., Cottler-Fox, M. H., and Yamada, K. M., 1980, The distribution of fibronectin in attachment sites of chick fibroblasts, Exp. Cell Res. 130: 477–481.PubMedCrossRefGoogle Scholar
  98. Fridkin, M., and Gottlieb, P., 1981, Tuftsin, Thr-Lys-Pro-Arg. Anatomy of an immunologically active peptide, Mol. Cell Biochem. 41: 73–97.PubMedCrossRefGoogle Scholar
  99. Fujikawa, L. S., Foster, C. S., Harrist, T. J., Lanigan, J. M., and Colvin, R. B., 1981, Fibronectin in healing rabbit corneal wounds, Lab. Invest. 45: 120–129.PubMedGoogle Scholar
  100. Fukuda, M., Levery, S. B., and Hakomori, S., 1982, Carbohydrate structure of hamster plasma fibronectin. Evidence for chemical diversity between cellular and plasma fibronectins, J. Biol. Chem. 257: 6856–6860.PubMedGoogle Scholar
  101. Furcht, L. T., 1983, Structure and function of the adhesive glycoprotein fibronectin, in: Modern Cell Biology ( B. Satir, ed.), Liss, New York, pp. 53–117.Google Scholar
  102. Furthmayr, H., Wiedemann, H., Timpl, R., Odermatt, E., and Engel, J., 1983, Electron-micro- scopical approach to a structural model of intima collagen, Biochem. J. 211: 303–311.PubMedGoogle Scholar
  103. Gartner, T. K., Williams, D. C., Minion, F. C., and Phillips, D. R., 1978, Thrombin-induced platelet aggregation is mediated by a platelet plasma membrane-bound lectin, Science 200: 1281–1283.PubMedCrossRefGoogle Scholar
  104. Gartner, T. K., Gerrard, J. M., White, J. G., and Williams, D. C., 1981, Fibrinogen is the receptor for the endogenous lectin of human platelets, Nature (London) 289: 688–700.CrossRefGoogle Scholar
  105. Gauss-Müller, V., Kleinman, H. K., Martin, G. R., and Schiffmann, E., 1980, Role of attachment factors and attractants in fibroblast chemotaxis, J. Lab. Clin. Med. 96: 1071–1080.PubMedGoogle Scholar
  106. Ginsberg, M. H., Painter, R. G., Forsyth, J., Birdwell, C., and Plow, E. F., 1980, Thrombin increases expression of fibronectin antigen on the platelet surface, Proc. Natl. Acad. Sci. USA 77: 1049–1053.PubMedCrossRefGoogle Scholar
  107. Ginsberg, M. H., Wencel, J. D., White, J. G., and Plow, E. F., 1983, Binding of fibronectin to a-granule-deficient platelets, J. Cell Biol. 97: 571–573.PubMedCrossRefGoogle Scholar
  108. Gjessing, R., and Seglen, P. O., 1980, Adsorption, simple binding and complex binding of rat hepatocytes to various in vitro substrata, Exp. Cell Res. 129: 239–249.PubMedCrossRefGoogle Scholar
  109. Goldberg, B., 1979, Binding of soluble type I collagen molecules to the fibroblast plasma membrane, Cell 16: 265–275.PubMedCrossRefGoogle Scholar
  110. Goldberg, B., 1982, Binding of soluble type I collagen to fibroblasts: Effects of thermal activation of ligand, ligand concentration, pinocytosis, and cytoskeletal modifiers, J. Cell Biol. 95: 747–751.PubMedCrossRefGoogle Scholar
  111. Goldberg, B., and Burgeson, R. E., 1982, Binding of soluble type I collagen to fibroblasts: Specificities for native collagen types, triple helical structure, telopeptides, propeptides, and cyanogen bromide-derived peptides, J. Cell Biol. 95: 752–756.PubMedCrossRefGoogle Scholar
  112. Gonda, S. R., and Shainoff, J. R., 1982, Adsorptive endocytosis of fibrin monomer by macrophages: Evidence of a receptor for the amino terminus of the fibrin a-chain, Proc. Natl. Acad. Sci. USA 79: 4565–4569.PubMedCrossRefGoogle Scholar
  113. Gospodarowicz, D., Greenburg, G., Foidart, J. M., and Savion, N., 1981, The production and localization of laminin in cultured vascular and corneal endothelial cells, J. Cell. Physiol. 107: 171–183.PubMedCrossRefGoogle Scholar
  114. Gospodarowicz, D., Cohen, D. C., and Fujii, D. K., 1982, Regulation of cell growth by the basal lamina and plasma factors: Relevance to embryonic control of cell proliferation and differentiation, in: Growth of Cells in Hormonally Defined Media: Hormones and Cell Culture, Volume IX, Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor, New York, pp. 95–124.Google Scholar
  115. Gospodarowicz, D., Gonzalez, R., and Fujii, D. K., 1983, Are factors originating from serum, plasma, or cultured cells involved in the growth-promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells, J. Cell. Physiol. 114: 191–202.PubMedCrossRefGoogle Scholar
  116. Grassi, J., Massoulié, J., and Timpl, R., 1983, Relationship of collagen-tailed acetylcholinesterase with basal lamina components. Absence of binding with laminin, fibronectin, and collagen types IV and V and lack of reactivity with different anti-collagen sera, Eur. J. Biochem. 133: 31–38.PubMedCrossRefGoogle Scholar
  117. Greenberg, J. H., Seppä, S., Seppä, H., and Hewitt, A. T., 1981, Role of collagen and fibronectin in neural crest cell adhesion and migration, Dey. Biol. 87: 259–266.CrossRefGoogle Scholar
  118. Greenburg, G., and Gospodarowicz, D., 1982, Inactivation of a basement membrane component responsible for cell proliferation but not for cell attachment, Exp. Cell Res. 140: 1–14.PubMedCrossRefGoogle Scholar
  119. Greenburg, G., and Hay, E. D., 1982, Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells, J. Cell Biol. 95: 333–339.PubMedCrossRefGoogle Scholar
  120. Greve, J. M., and Gottlieb, D. I., 1982, Monoclonal antibodies which alter the morphology of cultured chick myogenic cells, J. Supramol. Struct. 18: 221–230.Google Scholar
  121. Grinnell, F., 1978, Cellular adhesiveness and extracellular substrata, Int. Rev. Cytol. 53: 65–144.PubMedCrossRefGoogle Scholar
  122. Grinnell, F., 1980a, Fibroblast receptor for cell-substratum adhesion: Studies on the interaction of baby hamster kidney cells with latex beads coated by cold insoluble globulin (plasma fibronectin), J. Cell Biol. 86: 104–112.PubMedCrossRefGoogle Scholar
  123. Grinnell, F., 1980b, Visualization of cell-substratum adhesion plaques by antibody exclusion, Cell Biol. Int. Rep. 4: 1031–1036.PubMedCrossRefGoogle Scholar
  124. Grinnell, F., 1982, Fibronectin and wound healing, Am. J. Dermatopathol. 4: 185–188.PubMedCrossRefGoogle Scholar
  125. Grinnell, F., 1983, Cell attachment and spreading factors, in: Growth and Maturation Factor ( G. Guroff, ed.), Wiley, New York, pp. 267–292.Google Scholar
  126. Grinnell, F., and Bennett, M. H., 1981, Fibroblast adhesion on collagen substrate in the presence and absence of plasma fibronectin, J. Cell Sci. 48: 19–34.PubMedGoogle Scholar
  127. Grinnell, F., and Feld, M. K., 1982, Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium, J. Biol. Chem. 257: 4888–4893.PubMedGoogle Scholar
  128. Grinnell, F., and Hays, D. G., 1978a, Cell adhesion and spreading factor. Similarity to cold insoluble globulin in human serum, Exp. Cell Res. 115: 221–229.PubMedCrossRefGoogle Scholar
  129. Grinnell, F., and Hays, D. G., 1978b, Induction of cell spreading by substratum-adsorbed ligands directed against the cell surface, Exp. Cell Res. 116: 275–284.PubMedCrossRefGoogle Scholar
  130. Grinnell, F., and Minter, D., 1978, Attachment and spreading of baby hamster kidney cells to collagen substrata: Effects of cold-insoluble globulin, Proc. Natl. Acad. Sci. USA 75: 4408–4412.PubMedCrossRefGoogle Scholar
  131. Grinnell, F., and Phan, T. V., 1983, Deposition of fibronectin on material surfaces exposed to plasma: Quantitative and biological studies, J. Cell. Physiol. 116: 289–296.PubMedCrossRefGoogle Scholar
  132. Grinnell, F., Feld, M., and Minter, D., 1980, Fibroblast adhesion to fibrinogen and fibrin substrata: Requirement for cold-insoluble globulin (plasma fibronectin), Cell 19: 517–525.PubMedCrossRefGoogle Scholar
  133. Grinnell, F., Head, J. R., and Hoffpauir, J., 1982a, Fibronectin and cell shape in vivo: Studies on the endometrium during pregnancy, J. Cell Biol. 94: 597–606.PubMedCrossRefGoogle Scholar
  134. Grinnell, F., Lang, B. R., and Phan, T. V., 1982b, Binding of plasma fibronectin to the surfaces of BHK cells in suspension at 4°C, Exp. Cell Res. 142: 499–504.PubMedCrossRefGoogle Scholar
  135. Gudewicz, P. W., Molnar, J., Lai, M. Z., Beezhold, D. W., Siefring, G. E., Jr., Credo, R. B., and Lorand, L., 1980, Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages, J. Cell Biol. 87: 427–433.PubMedCrossRefGoogle Scholar
  136. Hahn, L. H. E., and Yamada, K. M., 1979a, Identification and isolation of a collagen-binding fragment of the adhesive glycoprotein fibronectin, Proc. Natl. Acad. Sci. USA 76: 1160–1163.PubMedCrossRefGoogle Scholar
  137. Hahn, L. H. E., and Yamada, K. M., 1979b, Isolation and biological characterization of active fragments of the adhesive glycoprotein fibronectin, Cell 18: 1043–1051.PubMedCrossRefGoogle Scholar
  138. Hall, W. M., and Ganguly, P., 1981, The relationship of serum fibronectin and cell shape to thrombin-induced inhibition of DNA synthesis in human fibroblasts, J. Cell. Physiol. 109: 271–280.PubMedCrossRefGoogle Scholar
  139. Hatten, M. E., Furie, M. B., and Rifkin, D. B., 1982, Binding of developing mouse cerebellar cells to fibronectin: A possible mechanism for the formation of the external granular layer, J. Neurosci. 2: 1195–1206.PubMedGoogle Scholar
  140. Hay, E. D. (ed.), 1981, Cell Biology of Extracellular Matrix, Plenum Press, New York, 417 pp.Google Scholar
  141. Hayashi, M., and Yamada, K. M., 1981, Differences in domain structures between plasma and cellular fibronectins, J. Biol. Chem. 256: 11292–11300.PubMedGoogle Scholar
  142. Hayashi, M., and Yamada, K. M., 1982, Divalent cation modulcation of fibronectin binding to heparin and to DNA, J. Biol. Chem. 257: 5263–5267.PubMedGoogle Scholar
  143. Hayashi, M., and Yamada, K. M., 1983, Domain structure of the carboxyl-terminal half of human plasma fibronectin, J. Biol. Chem. 258: 3332–3340.PubMedGoogle Scholar
  144. Hayashi, M., Schlesinger, D. H., Kennedy, D. W., and Yamada, K. M., 1980, Isolation and characterization of a heparin-binding domain of cellular fibronectin, J. Biol. Chem. 255: 10017–10020.PubMedGoogle Scholar
  145. Hayman, E. G., Engvall, E., A’Hearn, E., Barnes, D., Pierschbacher, M., and Ruoslahti, E., 1982, Cell attachment on replicas of SDS polyacrylamide gels reveals two adhesive plasma proteins, J. Cell Biol. 95: 20–23.PubMedCrossRefGoogle Scholar
  146. Hayman, E. G., Pierschbacher, M. D., Öhgren, Y., and Ruoslahti, E., 1983, Serum spreading factor (vitronectin) is present at the cell surface and in tissues, Proc. Natl. Acad. Sci. USA 80: 4003–4007.PubMedCrossRefGoogle Scholar
  147. Heasman, J., Hynes, R. O., Swan, A. P., Thomas, V., and Wylie, C. C., 1981, Primordial germ cells of Xenopus embryos: The role of fibronectin in their adhesion during migration, Cell 27: 437–447.PubMedCrossRefGoogle Scholar
  148. Hedman, K., Kurkinen, M., Alitalo, K., Vaheri, A., Johansson, S., and Hoök, M., 1979, Isolation of the pericellular matrix of human fibroblast cultures, J. Cell Biol. 81: 83–91.PubMedCrossRefGoogle Scholar
  149. Hewitt, A. T., Kleinman, H. K., Pennypacker, J. P., and Martin, G. R., 1980, Identification of an adhesion factor for chondrocytes, Proc. Natl. Acad. Sci. USA 77: 385–388.PubMedCrossRefGoogle Scholar
  150. Hewitt, A. T., Varner, H. H., Silver, M. H., Dessau, W., Wilkes, C. M., and Martin, G. R., 1982a, The isolation and partial characterization of chondronectin, an attachment factor for chondrocytes, J. Biol. Chem. 257: 2330–2334.PubMedGoogle Scholar
  151. Hewitt, A. T., Varner, H. H., Silver, M. H., and Martin, G. R., 1982b, The role of chondronectin and cartilage proteoglycan in the attachment of chondrocytes to collagen, in: Limb Development and Regeneration ( R. O. Kelly, P. F. Goetinck, and J. A. MacCabe, eds.), Liss, New York, pp. 25–33.Google Scholar
  152. Hirano, H., Yamada, Y., Sullivan, M., de Crombrugghe, B., Pastan, I., and Yamada, K. M., 1983, Isolation of genomic DNA clones spanning the entire fibronectin gene, Proc. Natl. Acad. Sci. USA 80: 46–50.PubMedCrossRefGoogle Scholar
  153. Hirata, K., Yoshida, Y., Shiramatsu, K., Freeman, A. E., and Hayasaki, H., 1983, Effects of laminin, fibronectin and type IV collagen on liver cell cultures, Exp. Cell Biol. 51: 121–129.PubMedGoogle Scholar
  154. Hogan, B. L. M., Cooper, A. R., and Kurkinen, M., 1980, Incorporation into Richert’s membrane of laminin-like extracellular proteins synthesized by parietal endoderm cells of mouse embryo, Del. Biol. 80: 289–300.CrossRefGoogle Scholar
  155. Holly, F. J., Dolowy, K., and Yamada, K. M., 1984, Comparative surface chemical studies of cellular fibronectin and submaxillary mucin monolayers: Effects of pH, ionic strength, and presence of calcium ions, J. Colloid Interfac. Sci., in press.Google Scholar
  156. Holmes, R., 1967, Preparation from human serum of an alpha-one protein which induces the immediate growth of unadapted cells in vitro, J. Cell Biol. 32: 297–308.PubMedCrossRefGoogle Scholar
  157. Hörmann, H., 1982, Fibronectin—mediator between cells and connective tissue, KIM Wochenschr. 60: 1265–1277.CrossRefGoogle Scholar
  158. Hörmann, H., and Seidl, M., 1980, Affinity chromatography on immobilized fibrin monomer, III. The fibrin affinity center of fibronectin, Hoppe-Seylers Z. Physiol. Chem. 361: 1449–1452.PubMedCrossRefGoogle Scholar
  159. Hoyer, L. W., 1980, The factor VIII complex: Structure and function, Blood 58: 1–13.Google Scholar
  160. Hsieh, P., and Sueoka, N., 1980, Antisera inhibiting mammalian cell spreading and possible cell surface antigens involved, J. Cell Biol. 86: 866–873.PubMedCrossRefGoogle Scholar
  161. Hughes, R. C., Pena, S. D. J., Clark, J., and Dourmashkin, R. R., 1979, Molecular requirements for the adhesion and spreading of hamster fibroblasts, Exp. Cell Res. 121: 307–314.PubMedCrossRefGoogle Scholar
  162. Hughes, R. C., Butters, T. D., and Aplin, J. D., 1981, Cell surface molecules involved in fibronectinmediated adhesion. A study using specific antisera, Eur. J. Cell Biol. 26: 198–207.PubMedGoogle Scholar
  163. Humphries, M. J., and Ayad, S. R., 1984, Stimulation of DNA synthesis by cathepsin D digests of fibronectin, Nature 305: 811–813.CrossRefGoogle Scholar
  164. Hynes, R. O., 1973, Alteration of cell-surface proteins by viral transformation and by proteolysis, Proc. Natl. Acad. Sci. USA 70: 3170–3174.PubMedCrossRefGoogle Scholar
  165. Hynes, R. O., 1981, Fibronectin and its relation to cellular structure and behavior, in: Cell Biology of Extracellular Matrix, ( E. D. Hay, ed.), Plenum Press, New York, pp. 295–333.CrossRefGoogle Scholar
  166. Hynes, R. O., and Destree, A. T., 1978, Relationships between fibronectin (LETS protein) and actin, Cell 15: 875–886.PubMedCrossRefGoogle Scholar
  167. Hynes, R. O., and Yamada, K. M., 1982, Fibronectins: Multifunctional modular glycoproteins, J. Cell Biol. 95: 369–377.PubMedCrossRefGoogle Scholar
  168. Hynes, R. O., Destree, A. T., and Wagner, D. D., 1982, Relationships between microfilaments, cell-substratum adhesion, and fibronectin, Cold Spring Harbor Symp. Quant. Biol. 46: 659–670.PubMedCrossRefGoogle Scholar
  169. Isemura, M., Hsu, C.-C., Yosizawa, Z., Odani, S., and Ono, T., 1982a, Interaction of fibronectin with arginine-agarose, FEBS Lett. 150: 243–246.PubMedCrossRefGoogle Scholar
  170. Isemura, M., Yosizawa, Z., Koide, T., and Ono, T., 1982b, Interaction of fibronectin and its proteolytic fragments with hyaluronic acid, J. Biochem. 91: 731–734.PubMedGoogle Scholar
  171. Jaffe, E. A., Leung, L. L. K., Nachman, R. L., Levin, R. I., and Mosher, D. F., 1982, Thrombospondin is the endogenous lectin of human platelets, Nature 295: 246–248.PubMedCrossRefGoogle Scholar
  172. Jaffe, E. A., Ruggiero, J. T., Leung, L. L. K., Doyle, M. J., McKeown-Longo, P. J., and Mosher, D. F., 1983, Cultured human fibroblasts synthesize and secrete thrombospondin and incorporate it into extracellular matrix, Proc. Natl. Acad. Sci. USA 80: 998–1002.PubMedCrossRefGoogle Scholar
  173. Jilek, F., and Hörmann, H., 1978a, Cold-insoluble globulin (Fibronectin): Affinity to soluble collagen of various types, Hoppe-Seylers Z. Physiol. Chem. 359: 247–250.PubMedGoogle Scholar
  174. Jilek, F., and Hörmann, H., 1978b, Fibronectin (cold-insoluble globulin): Mediation of fibrin- monomer binding to macrophages, Hoppe-Seylers Z. Physiol. Chem. 359: 1603–1505.PubMedGoogle Scholar
  175. Johansson, S., Kjellén, L., Höök, M., and Timpl, R., 1981, Substrate adhesion of rat hepatocytes: A comparison of laminin and fibronectin as attachment proteins, J. Cell Biol. 90: 260–264.PubMedCrossRefGoogle Scholar
  176. Katow, H., Yamada, K. M., and Solursh, M., 1982, Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo, Differentiation 22: 120–124.PubMedCrossRefGoogle Scholar
  177. Kennedy, D. W., Rohrbach, D. H., Martin, G. R., Momoi, T., and Yamada, K. M., 1983, The adhesive glycoprotein laminin is an agglutinin, J. Cell. Physiol. 114: 257–262.PubMedCrossRefGoogle Scholar
  178. Keski-Oja, J., and Yamada, K. M., 1981, Isolation of an actin-binding fragment of fibronectin, Biochem. J. 193: 615–620.PubMedGoogle Scholar
  179. Keski-Oja, J., Sen, A., and Todaro, G. J., 1980, Direct association of fibronectin and actin molecules in vitro, J. Cell Biol. 85: 527–533.PubMedCrossRefGoogle Scholar
  180. Kjellén, L., Pettersson, I., and Höök, M., 1981, Cell-surface heparan sulfate: An intercalated membrane proteoglycan, Proc. Natl. Acad. Sci. USA 78: 5371–5375.PubMedCrossRefGoogle Scholar
  181. Klebe, R. J., 1974, Isolation of a collagen-dependent cell attachment factor, Nature 250: 248–251.PubMedCrossRefGoogle Scholar
  182. Klebe, R. J., Rosenberger, P. G., Naylor, S. L., Burns, R. L., Novak, R., and Kleinman, H., 1977, Cell attachment to collagen. Isolation of a cell attachment mutant, Exp. Cell Res. 104: 119–125.PubMedCrossRefGoogle Scholar
  183. Klebe, R. J., Hall, J. R., Naylor, S. L., and Dickey, W. D., 1978, Bioautography of cell attachment proteins, Exp. Cell Res. 115: 73–78.PubMedCrossRefGoogle Scholar
  184. Klebe, R. J., Bentley, K. L., and Schoen, R. C., 1981, Adhesive substrates for fibronectin. J. Cell. Physiol. 109: 481–488.PubMedCrossRefGoogle Scholar
  185. Kleinman, H. K., McGoodwin, E. B., Martin, G. R., Klebe, R. J., Fietzek, P. P., and Woolley D. E., 1978, Localization of the binding site for cell attachment in the alpha-1(I) chain of collagen, J. Biol. Chem. 253: 5642–5646.PubMedGoogle Scholar
  186. Kleinman, H. K., Martin, G. R., and Fishman, P. H., 1979, Ganglioside inhibition of fibronectinmediated cell adhesion to collagen, Proc. Natl. Acad. Sci. USA 76: 3367–3371.PubMedCrossRefGoogle Scholar
  187. Kleinman, H. K., Klebe, R. J., and Martin, G. R., 1981, Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88: 473–485.PubMedCrossRefGoogle Scholar
  188. Kleinman, H. K., McGarvey, M. L., Hassell, J. R., and Martin, G. R., 1983, Formation of a supramolecular complex is involved in the reconstitution of basement membrane components, Biochemistry 22: 4969–4974.PubMedCrossRefGoogle Scholar
  189. Knox, P., and Griffiths, S., 1980, The distribution of cell-spreading activities in sera: A quantitative approach, J. Cell Sci. 46: 97–112.PubMedGoogle Scholar
  190. Knox, P., and Griffiths, S., 1982, The abnormal morphology of polyoma-transformed baby hamster kidney cells is due to a failure to respond to 70K spreading factor, J. Cell Sci. 55:301–316.PubMedGoogle Scholar
  191. Knudsen, K., Rao, P. E., Damsky, C. H., and Buck, C. A., 1981, Membrane glycoproteins involved in cell substratum adhesion, Proc. Natl. Acad. Sci. USA 78: 6071–6075.PubMedCrossRefGoogle Scholar
  192. Komblihtt, A. R., Vibe-Pedersen, K., and Baralle, F. E., 1983, Isolation and characterization of cDNA clones for human and bovine fibronectins, Proc. Natl. Acad. Sci. USA 80: 3218–3222.CrossRefGoogle Scholar
  193. Koteliansky, V. E., Gneushev, H. N., Glukhova, M. A., Shartava, A. S., and Smirnov, V. N., 1982, Fibronectin has an affinity to vinculin, a-actinin, tropomyosin and myosin, FEBS Lett. 143: 168–169.PubMedCrossRefGoogle Scholar
  194. Kratochwil, K., 1983, Embryonic induction, in: Cell Interactions and Development ( K. M. Yamada, ed.), Wiley, New York, pp. 99–122.Google Scholar
  195. Kühn, K., Wiedemann, H., Timple, R., Ristelli, J., Dieringer, H., Voss, T., and Glanville, R. W., 1981, Macromolecular structure of basement membrane components. Identification of 7S collagen as a crosslinking domain of type IV collagen, FEBS Lett. 125: 123–128.PubMedCrossRefGoogle Scholar
  196. Kuusela, P., 1978, Fibronectin binds to Staphylococcus aureus, Nature 276: 718–720.PubMedCrossRefGoogle Scholar
  197. Lahav, J., Schwartz, M. A., and Hynes, R. O., 1982, Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: Interaction of thrombospondin with fibronectin and collagen, Cell 31: 253–262.PubMedCrossRefGoogle Scholar
  198. Lander, A. D., Fujii, D. K., Gospodarowicz, D., and Reichardt, L. F., 1982, Characterization of a factor that promotes neurite outgrowth: Evidence linking activity to heparin sulfate proteoglycan, J. Cell Biol. 94: 574–585.PubMedCrossRefGoogle Scholar
  199. Lang, H., Glanville, R. W., Fietzek, P. P., and Kühn, K., 1979, The covalent structure of calf skin type III collagen. IV. The amino acid sequence of the cyanogen bromide peptide a 1(III)CB5 (positions 552–788), Hoppe-Seyler’s Z. Physiol. Chem. 360: 841–850.PubMedGoogle Scholar
  200. Laterra, J., Silbert, J. E., and Culp, L. A., 1983, Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin, J. Cell Biol. 96: 112–123.PubMedCrossRefGoogle Scholar
  201. Laurie, G. W., Leblond, C. P., and Martin, G. R., 1982, Localization of type IV collagen, laminin, heparan sulfate, proteoglycan, and fibronectin to the basal lamina of basement membranes, J. Cell Biol. 95: 340–344.PubMedCrossRefGoogle Scholar
  202. LeDouarin, N., 1980, The ontogeny of the neural crest in avian embryo chimaeras, Nature 286: 663–669.CrossRefGoogle Scholar
  203. Leivo, I., Vaheri, A., Timpl, R., and Wartiovaara, J., 1980, Appearance and distribution of collagens and laminin in the early mouse embryo, Dev. Biol. 76: 100–114.PubMedCrossRefGoogle Scholar
  204. Lesot, H., Kühl, U., and von der Mark, K., 1983, Isolation of a laminin-binding protein from muscle cell membrane, EMBO J. 2 (6): 861–865.PubMedGoogle Scholar
  205. Leung, L., and Nachman, R., 1982, Complex formation of platelet thrombospondin with fibrinogen, J. Clin. Invest. 70: 542–549.PubMedCrossRefGoogle Scholar
  206. Linsenmayer, T. F., 1981, Collagen, in: Cell Biology of Extracellular Matrix ( E. D. Hay, ed.), Plenum Press, New York, pp. 5–37.CrossRefGoogle Scholar
  207. Linsenmayer, T. F., Gibney, E., Toole, B. P., and Gross, J., 1978, Cellular adhesion to collagen, Exp. Cell Res. 116: 470–474.PubMedCrossRefGoogle Scholar
  208. Linsenmayer, T. F., Fitch, J. M., Schmid, T. M., Zak, N. B., Gibney, E., Sanderson, R. D., and Mayne, R., 1983, Monoclonal antibodies against chicken type V collagen: Production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs, J. Cell Biol. 96: 124–132.PubMedCrossRefGoogle Scholar
  209. Loring, J., Glimelius, B., and Weston, J. A., 1982, Extracellular matrix materials influence quail neural crest cell differentiation in vitro, Dev. Biol. 90: 165–174.PubMedCrossRefGoogle Scholar
  210. Macarak, E. J., and Howard, P. S., 1983, Adhesion of endothelial cells to extracellular matrix proteins, J. Cell. Physiol. 116: 76–86.PubMedCrossRefGoogle Scholar
  211. Malinoff, H. L., and Wicha, M. S., 1983, Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells, J. Cell Biol. 96: 1475–1479.PubMedCrossRefGoogle Scholar
  212. Margossian, S. S., Lawler, J. W., and Slayter, H. S., 1981, Physical characterization of platelet thrombospondin, J. Biol. Chem. 256: 7495–7500.PubMedGoogle Scholar
  213. Martinez-Hernandez, A., Gay, S., and Miller, E. J., 1982, Ultrastructural localization of type V collagen in rat kidney, J. Cell Biol. 92: 343–349.PubMedCrossRefGoogle Scholar
  214. Mauger, A., Demarchez, M., Herbage, D., Grimaud, J.-A., Druguet, M., Hartmann, D., and Sengel, P., 1982, Immunofluorescent localization of collagen types I and II, and of fibronectin during feather morphogenesis in the chick embryo, Dev. Biol. 94: 93–105.PubMedCrossRefGoogle Scholar
  215. Mayer, B. W., Jr., Hay, E. D., and Hynes, R. D., 1981, Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa, Dev. Biol. 82: 267–286.PubMedCrossRefGoogle Scholar
  216. Mayne, R., and von der Mark, K., 1983, Collagens of cartilage, in: Cartilage, Volume 1 ( B. K. Hall, ed.), Academic Press, New York, pp. 181–214.CrossRefGoogle Scholar
  217. McAbee, D. D., and Grinnell, F., 1983, Fibronectin-mediated binding and phagocytosis of polystyrene latex bcads by baby hamster kidney cells, J. Cell Biol. 97: 1515–1523.PubMedCrossRefGoogle Scholar
  218. McConnell, M. R., Blumberg, P. M., and Rossow, P. W., 1978, Dimeric and high molecular weight forms of the large external transformation-sensitive protein on the surface of chick embryo fibroblasts, J. Biol. Chem. 253: 7522–7530.PubMedGoogle Scholar
  219. McKeown-Longo, P. J., and Mosher, D. F., 1983, Binding of plasma fibronectin to cell layers of human skin fibroblasts, J. Cell Biol. 97: 466–472.PubMedCrossRefGoogle Scholar
  220. McPherson, J., Sage, H., and Bornstein, P., 1981, Isolation and characterization of a glycoprotein secreted by aortic endothelial cells in culture. Apparent identity with platelet thrombospondin, J. Biol. Chem. 256: 11330–11336.PubMedGoogle Scholar
  221. Menzel, E. J., Smolen, J. S., Liotta, L., and Reid, K. B., 1981, Interaction of fibronectin with Clq and its collagen-like fragment (CLF), FEBS Lett. 129: 188–192.PubMedCrossRefGoogle Scholar
  222. Miller, E. J., 1983, The structure of collagen, in: Connective Tissue Diseases (B. M. Wagner, R. Fleischmajer, and N. Kaufman, eds.), Williams and Wilkens, Baltimore, Maryland, pp. 4–15.Google Scholar
  223. Mollenhauer, J., and von der Mark, K., 1983, Isolation and characterization of collagen-binding glycoprotein from chondrocyte membranes, EMBO J. 2: 45–50.PubMedGoogle Scholar
  224. Mosesson, M. W., 1978, Structure of human plasma cold-insoluble globulin and the mechanism of its precipitation in the cold with heparin or fibrin—fibrinogen complexes, Ann. N.Y. Acad. Sci. 312: 11–30.CrossRefGoogle Scholar
  225. Mosesson, M. W., and Amrani, D. L., 1980, The structure and biologic activities of plasma fibronectin, Blood 56: 145–158.PubMedGoogle Scholar
  226. Mosesson, M. W., and Umfleet, R. A., 1970, The cold-insoluble globulin of human plasma, J. Biol. Chem. 245: 5728–5736.PubMedGoogle Scholar
  227. Mosesson, M. W., Chen, A. B., and Huseby, R. M., 1975, The cold-insoluble globulin of human plasma: Studies of its essential structural features, Biochim. Biophys. Acta 386: 509–524.PubMedCrossRefGoogle Scholar
  228. Mosher, D. F., 1976, Action of fibrin-stabilizing factor on cold-insoluble globulin and alpha 2-macroglobulin in clotting plasma, J. Biol. Chem. 251: 1639–1645.PubMedGoogle Scholar
  229. Mosher, D. F., 1980, Fibronectin, Prog. Hemost. Thromb. 5: 111–151.PubMedGoogle Scholar
  230. Mosher, D. F. (ed.), 1984, Fibronectin, Academic Press, New York, in press.Google Scholar
  231. Mosher, D. F., and Proctor, R. A., 1980, Binding and factor XIIIa-mediated cross-linking of a 27kilodalton fragment of fibronectin to Staphylococcus aureus, Science 209: 927–929.Google Scholar
  232. Mosher, D. F., Schad, P. E., and Vann, J. M., 1980, Cross-linking of collagen and fibronectin by factor XIIIa. Localization of participating glutaminyl residues to a tryptic fragment of fibronectin, J. Biol. Chem. 255: 1181–1188.PubMedGoogle Scholar
  233. Mosher, D. F., Doyle, J. J., and Jaffe, E. A., 1982, Synthesis and secretion of thrombospondin by cultured human endothelial cells, J. Cell Biol. 93: 343–348.PubMedCrossRefGoogle Scholar
  234. Murray, J. C., Stingl, G., Kleinman, H. K., Martin, G. R., and Katz, S. I., 1979, Epidermal cells adhere preferentially to type IV (basement membrane) collagen, J. Cell Biol. 80: 197–202.PubMedCrossRefGoogle Scholar
  235. Neff, N. T., Lowrey, C., Decker, C., Tovar, A., Damsky, C., Buck, C., and Horwitz, A. F., 1982, A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices, J. Cell Biol. 95: 654–666.PubMedCrossRefGoogle Scholar
  236. Newgreen, D., and Thiery, J. P., 1980, Fibronectin in early avian embryos: Synthesis and distribution along the migration pathways of neural crest cells, Cell Tissue Res. 211: 269–291.PubMedCrossRefGoogle Scholar
  237. Newgreen, D. F., Gibbins, I. L., Sauter, J., Wallenfelds, B., and Wutz, R., 1982, Ultrastructural and tissue-culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo, Cell Tissue Res. 221: 521–549.PubMedCrossRefGoogle Scholar
  238. Nishida, T., Nakagawa, S., Awata, T., Ohashi, Y., Watanabe, K., and Manabe, R., 1983, Fibronectin promotes epithelial migration of cultured rabbit cornea in situ, J. Cell Biol. 97: 1653–1657.PubMedCrossRefGoogle Scholar
  239. Nishioka, K., Amoscato, A. A., and Babcack, G. F., 1981, Tuftsin: A hormone-like tetrapeptide with antimicrobial and antitumor activities, Life Sci. 28: 1081–1090.PubMedCrossRefGoogle Scholar
  240. Norton, E. K., and Izzard, C. S., 1982, Fibronectin promotes formation of the close cell-to-substrate contact in cultured cells, Exp. Cell Res. 139: 463–467.PubMedCrossRefGoogle Scholar
  241. Odermatt, E., Risteli, J., van Delden, V., and Timpl, R., 1983, Structural diversity and domain composition of a unique collagenous fragment (intima collagen) obtained from human placenta, Biochem. J. 211: 295–302.PubMedGoogle Scholar
  242. Ohno, M., Martinez-Hernandez, A., Ohno, N., and Kelfalides, N., 1983, Isolation of laminin from human placental basement membranes: Amnion, chorion and chorionic microvessels, Biochem. Biophys. Res. Comm. 112: 1091–1098.PubMedCrossRefGoogle Scholar
  243. Oldberg, A., Linney, E., and Ruoslahti, E., 1983, Molecular cloning and nucleotide sequence of cDNA clone coding for the cell attachment domain in human fibronectin, J. Biol. Chem. 258: 10193–10196.PubMedGoogle Scholar
  244. Olden, K., Pratt, R. M., and Yamada, K. M., 1978, Role of carbohydrates in protein secretion and turnover: Effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts, Cell 13: 461–473.PubMedCrossRefGoogle Scholar
  245. Olden, K., Pratt, R. M., and Yamada, K. M., 1979, Role of carbohydrate in biological function of the adhesive glycoprotein fibronectin, Proc. Natl. Acad. Sci. USA 76: 3343–3347.PubMedCrossRefGoogle Scholar
  246. Olsen, B. R., 1981, Collagen biosynthesis, in: Cell Biology of Extracellular Matrix, ( E. D. Hay, ed.), Plenum Press, New York, pp. 139–177.CrossRefGoogle Scholar
  247. O’Neill, C. H., Riddle, P. N., and Jordan, P. W., 1979, The relation between surface area and anchorage dependence of growth in hamster and mouse fibroblasts, Cell 16: 909–918.PubMedCrossRefGoogle Scholar
  248. Oppenheimer-Marks, N., and Grinnell, F., 1982, Inhibition of fibronectin receptor function by antibodies against baby hamster kidney cell wheat germ agglutinin receptors, J. Cell Biol. 95: 876–884.PubMedCrossRefGoogle Scholar
  249. Orly, J., and Sato, G., 1979, Fibronectin mediates cytokinesis and growth of rat follicular cells in serum-free medium, Cell 17: 295–305.PubMedCrossRefGoogle Scholar
  250. Ormerod, E. J., Warburton, M. J., Hughes, C., and Rudland, P. S., 1983, Synthesis of basement membrane proteins by rat mammary epithelial cells, Dey. Biol. 96: 269–275.CrossRefGoogle Scholar
  251. Ott, U., Odermatt, E., Engel, J., Furthmayr, H., and Timpl, R., 1982, Protease resistance and conformation of laminin, Eur. J. Biochem. 123: 63–72.PubMedCrossRefGoogle Scholar
  252. Owens, M. R., and Cimino, C. D., 1982, Synthesis of fibronectin by the isolated perfused rat liver, Blood 59: 1305–1309.PubMedGoogle Scholar
  253. Palotie, A., Peltonen, L., Risteli, L., and Risteli, J., 1983, Effect of the structural components of basement membranes on the attachment of teratocarcinoma-derived endodermal cells, Exp. Cell Res. 144: 31–37.PubMedCrossRefGoogle Scholar
  254. Pande, H., and Shively, J. E., 1982, NH2-terminal sequences of DNA-, heparin-, and gelatinbinding tryptic fragments from human plasma fibronectin. Arch. Biochem. Biophys. 213: 258–265.PubMedCrossRefGoogle Scholar
  255. Pande, H., Corkill, J., Sailor, R., and Shively, J. E., 1981, Comparative structural studies of human plasma and amniotic fluid fibronectins, Biochem. Biophys. Res. Commun. 101: 265–272.PubMedCrossRefGoogle Scholar
  256. Parsons, R. G., Todd, H. D., and Kowal, R., 1979, Isolation and identification of a human serum fibronectin-like protein elevated during malignant disease, Cancer Res. 39: 4341–4345.PubMedGoogle Scholar
  257. Pearlstein, E., 1978, Substrate activation of cell adhesion factor as a prerequisite for cell attachment, Int. J. Cancer 22: 32–35.PubMedCrossRefGoogle Scholar
  258. Pearlstein E., Gold, L. I., and Garcia-Pardo, A., 1980, Fibronectin: A review of its structure and biological activity, Mol. Cell. Biochem. 29: 103–128.PubMedCrossRefGoogle Scholar
  259. Pearlstein, E., Sorvillo, J., and Gigli, I., 1982, The interaction of human plasma fibronectin with a subunit of the first component of complement, Clq, J. Immunol. 128: 2036–2039.PubMedGoogle Scholar
  260. Pegrum, S. M., and Maroudas, N. G., 1975, Early events in fibroblast adhesion to glass. An electron microscopic study, Exp. Cell Res. 95: 416–422.CrossRefGoogle Scholar
  261. Pennypacker, J. P., Hassell, J. R., Yamada, K. M., and Pratt, R. M., 1979, The influence of an adhesive cell surface protein on chondrogenic expression in vitro, Exp. Cell Res. 121: 411–415.PubMedCrossRefGoogle Scholar
  262. Perkins, M. E., Ji, T. H., and Hynes, R. O., 1979, Cross-linking of fibronectin to sulfated proteoglycans at the cell surface, Cell 16: 941–952.PubMedCrossRefGoogle Scholar
  263. Petersen, T. E., Th¢gersen, H. C., Skorstengaard, K., Vibe-Pedersen, K., Sahl, P., Sottrup-Jensen, L., and Magnusson, S., 1983, Partial primary structure of bovine plasma fibronectin: Three types of internal homology, Proc. Natl. Acad. Sci. USA 80: 137–141.PubMedCrossRefGoogle Scholar
  264. Pierschbacher, M. D., Hayman, E. G., and Ruoslahti, E., 1981, Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule, Cell 26: 259–267.PubMedCrossRefGoogle Scholar
  265. Pierschbacher, M. D., Ruoslahti, E., Sundelin, J., Lind, P., and Peterson, P. A., 1982, The cell attachment domain of fibronectin. Determination of the primary structure, J. Biol. Chem. 257: 9593–9597.PubMedGoogle Scholar
  266. Pierschbacher, M. D., Hayman, E. G., and Ruoslahti, E., 1983, Synthetic peptide with cell attachment activity of fibronectin, Proc. Natl. Acad. Sci. USA 80: 1224–1227.PubMedCrossRefGoogle Scholar
  267. Plow, E. F., and Ginsberg, M. H., 1981, Specific and saturable binding of plasma fibronectin to thrombin-stimulated human platelets, J. Biol. Chem. 256: 9477–9482.PubMedGoogle Scholar
  268. Podleski, T. R., Greenberg, I., Schlessinger, J., and Yamada, K., 1979, Fibronectin delays the fusion of L6 myoblasts, Exp. Cell Res. 123: 104–126.Google Scholar
  269. Postlethwaite, A. E., Keski-Oja, J., Balian, G., and Kang, A. H., 1981, Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment, J. Exp. Med. 153: 494–499.PubMedCrossRefGoogle Scholar
  270. Pouysségur, J., Willingham, M., and Pastan, I., 1977, Role of cell surface carbohydrates and proteins in cell behavior Studies on the biochemical reversion of an N-acetylglucosaminedeficient fibroblast mutant, Proc. Natl. Acad. Sci. USA 74: 243–247.PubMedCrossRefGoogle Scholar
  271. Prockop, D. J., Kivirikko, K. I., Tuderman, L., and Guzman, N. A., 1979, The biosynthesis of collagen and its disorders, N. Engl. J. Med. 301: 13–23, 77–85.CrossRefGoogle Scholar
  272. Proctor, R. A., Mosher, D. F., and Olbrantz, P. J., 1982, Fibronectin binding to Staphylococcus aureus, J. Biol. Chem. 257: 14788–14794.PubMedGoogle Scholar
  273. Raff, M. C., Fields, K. L., Hakomori, S.-I., Mirsky, R., Pruss, R. M., and Winter, J., 1979, Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174: 283–308.PubMedCrossRefGoogle Scholar
  274. Ramachandran, G. N., and Reddi, A. H. (eds.), 1976, Biochemistry of Collagen, Plenum Press, New York, 536 pp.Google Scholar
  275. Rao, C. N., Margulies, I. M. K., Goldfarb, R. H., Madri, J. A., Woodley, D. T., and Liotta, L. A., 1982a, Differential proteolytic susceptibility of laminin alpha and beta subunits, Arch. Biochem. Biophys. 219: 65–70.PubMedCrossRefGoogle Scholar
  276. Rao, C. N., Inger, M. K., Margulies, T. S. T., Terranova, V. P., Madri, J. A., and Liotta, L. A., 1982b, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257: 9740–9744.PubMedGoogle Scholar
  277. Rao, C. N., Barsky, S. H., Terranova, V. P., and Liotta, L. A., 1983, Isolation of a tumor cell laminen receptor, Biochem. Biophys. Res. Comm. 111: 804–808.PubMedCrossRefGoogle Scholar
  278. Rapraeger, A. C., and Bemfield, 1983, Heparan sulfate proteoglycans from mouse mammary epithelial cells, J. Biol. Chem. 258, 3632–3636.PubMedGoogle Scholar
  279. Rauvala, H., Carter, W. G., and Hakomori, S.-I., 1981, Studies on cell adhesion and recognition I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin, J. Cell Biol. 88: 127–137.PubMedCrossRefGoogle Scholar
  280. Rauvala, H., Prieels, J.-P., and Finne, J., 1983, Cell adhesion mediated by a purified fucosyltransferase, Proc. Natl. Acad. Sci. USA 80: 3991–3995.PubMedCrossRefGoogle Scholar
  281. Reddi, A. H., 1974, Bone matrix in the solid state: Geometric influence on differentiation of fibroblasts, in: Advances in Biological and Medical Physics, Volume 15, ( J. H. Lawrence and J. W. Gofman, eds.), Academic Press, New York, pp. 1–18.Google Scholar
  282. Rees, D. A., Lloyd, C. W., and Thom, D., 1977, Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins, Nature 267: 124–128.PubMedCrossRefGoogle Scholar
  283. Reid, L., 1982, Regulation of growth and differentiation of mammalian cells by hormones and extracellular matrix, in: From Gene to Protein: Translation into Biotechnology, Fourteenth Miami Winter Symposium ( W. J. Whelan, ed.), Academic Press, New York, pp. 53–73.CrossRefGoogle Scholar
  284. Richter, H., and Hörmann, H., 1982, Early and late cathepsin D-derived fragments of fibronectin containing the C-terminal interchain disulfide cross-link, Hoppe-Seylers Z. Physiol. Chem. 363: 351–364.PubMedCrossRefGoogle Scholar
  285. Richter, H., Seidl, M., and Hörmann, H., 1981, Location of heparin-binding sites of fibronectin. Detection of hitherto unrecognized transamidase sensitive site, Hoppe-Seylers Z. Physiol. Chem. 362: 399–408.PubMedCrossRefGoogle Scholar
  286. Rocco, M., Carson, M., Hantgan, R., McDonagh, J., and Hermans, J., 1983, Dependent of the shape of the plasma fibronectin molecule on solvent composition: Ionic strength and glycerol content, J. Biol. Chem. 258: 14545–14549.PubMedGoogle Scholar
  287. Rogers, S. L., Letourneau, P. C., Palm, S. L., McCarthy, J., and Furcht, L., 1983, Neurite extension by peripheral and central nervous system neurons in response to substratum bound fibronectin and laminin Dev. Biol. 98: 212–220.PubMedCrossRefGoogle Scholar
  288. Rohde, H., Bächinger, H. P., and Timpl, R., 1980, Characterization of pepsin fragments of laminin in a tumor basement membrane. Evidence for the existence of related proteins, Hoppe-Seylers Z. Physiol. Chem. 361: 1651–1660.PubMedCrossRefGoogle Scholar
  289. Rojkind, M., Gatmaitan, Z., MacKensen, S., Giambrone, M.-A., Ponce, P., and Reid, L. M., 1980, Connective tissue biomatrix: Its isolation and utilization for long-term cultures of normal rate hepatocytes, J. Cell Biol. 87: 255–263.PubMedCrossRefGoogle Scholar
  290. Rovasio, R. A., Delouvée, A., Yamada, K. M., Timpl, R., and Thiery, J. P., 1983, Neural crest cell migration: Requirements for exogenous fibronectin and high cell density, J. Cell Biol. 96: 462–473.PubMedCrossRefGoogle Scholar
  291. Rubin, K., Höök, M., Öbrink, B., and Timpl, R., 1981, Substrate adhesion of rat hepatocytes: Mechanism of attachment to collagen substrates, Cell 24: 463–470.PubMedCrossRefGoogle Scholar
  292. Ruoslahti, E., and Hayman, E. G., 1979, Two active sites with different characteristics in fibronectin, FEBS Lett. 97: 221–224.PubMedCrossRefGoogle Scholar
  293. Ruoslahti, E., and Vaheri, A., 1975, Interaction of soluble fibroblast surface antigen with fibrinogen and fibrin. Identity with cold insoluble globulin of human plasma, J. Exp. Med. 141: 497–501.PubMedCrossRefGoogle Scholar
  294. Ruoslahti, E., Hayman, E. G., Kuusela, P., Shively, J. E., and Engvall, E., 1979, Isolation of a tryptic fragment containing the collagen-binding site of plasma fibronectin, J. Biol. Chem. 254: 6054–6059.PubMedGoogle Scholar
  295. Ruoslahti, E., Engvall, E., and Hayman, E. G., 1981a, Fibronectin: Current concepts of its structure and functions, Coll. Rel. Res. 1: 95–128.CrossRefGoogle Scholar
  296. Ruoslahti, E., Engvall, E., Hayman, E. G., and Spiro, R. G., 1981b, Comparative studies on amniotic fluid and plasma fibronectins, Biochem. J. 193: 295–299.PubMedGoogle Scholar
  297. Ruoslahti, E., Hayman, E. G., Engvall, E., Cothran, W. C., and Butler, W. T., 1981c, Alignment of biologically active domains in the fibronectin molecule, J. Biol. Chem. 256: 7277–7281.PubMedGoogle Scholar
  298. Ryden, C., Rubin, K., Speziale, P., Höök, M., Lindberg, M., and Wadstrom, T., 1983, Fibronectin receptors from Staphylococcus aureus, J. Biol. Chem. 258: 3396–3401.Google Scholar
  299. Saba, T. M., and Jaffe, E., 1980, Plasma fibronectin (opsonic glycoprotein): Its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function, Am. J. Med. 68: 577–594.PubMedCrossRefGoogle Scholar
  300. Sage, H., Pritzl, P., and Bornstein, P., 1980, A unique, pepsin-sensitive collagen synthesized by aortic endothelial cells in culture, Biochemistry 19: 5747–5755.PubMedCrossRefGoogle Scholar
  301. Saito, Y., Imada, T., and Inada, Y., 1982, Platelet’s adhering protein: Isolation of a new non-fibronectin protein from bovine platelet membrane, Thromb. Res. 25: 143–147.PubMedCrossRefGoogle Scholar
  302. Sakashita, S., Engvall, E., and Ruoslahti, E., 1980, Basement membrane glycoprotein laminin binds to heparin, FEBS Lett. 116: 243–246.PubMedCrossRefGoogle Scholar
  303. Schnieke, A., Harbers, K., and Jaenisch, R., 1983, Embryonic lethal mutation in mice induced by retrovirus insertion into the al(I)collagen gene, Nature (London) 304: 315–320.CrossRefGoogle Scholar
  304. Schor, S. L., and Court, J., 1979, Different mechanisms in the attachment of cells to native and denatured collagen, J. Cell Sci. 38: 267–281.PubMedGoogle Scholar
  305. Schor, S. L., Schor, A. M., and Bazill, G. W., 1981a, The effects of fibronectin on the migration of human foreskin fibroblasts and Syrian hamster melanoma cells into three dimensional gels of native collagen fibres, J. Cell. Sci. 48: 301–314.PubMedGoogle Scholar
  306. Schor, S. L., Schor, A. M., and Bazill, G. W., 198lb, The effects of fibronectin on the adhesion and migration of chinese hamster ovary cells on collagen substrata, J. Cell. Sci. 49: 299–310.PubMedGoogle Scholar
  307. Scott, D. M., Murray, J. C., and Barnes, M. J., 1983, Investigation of the attachment of bovine corneal endothelial cells to collagens and other components of the subendothelium role of fibronectin, Exp. Cell Res. 144: 472–478.PubMedCrossRefGoogle Scholar
  308. Seidl, M., and Hörmann, H., 1983, Affinity chromatography on immobilized fibrin monomer, IV. Two fibrin-binding peptides of a chymotryptic digest of human plasma fibronectin, Hoppe-Seylers Z. Physiol. Chem. 364: 83–92.PubMedCrossRefGoogle Scholar
  309. Sekiguchi, K., and Hakomori, S., 1980, Functional domain structure of fibronectin, Proc. Natl. Acad. Sci. USA 77: 2662–2665.CrossRefGoogle Scholar
  310. Sekiguchi, K., and Hakomori, S., 1983, Domain structure of human plasma fibronectin. Differences and similarities between human and hamster fibronectins, J. Biol. Chem. 256: 3967–3973.Google Scholar
  311. Sekiguchi, K., Fukuda, M., and Hakomori, S., 1981, Domain structure of hamster plasma fibronectin. Isolation and characterization of four functionally distinct domains and their unequal distribution between two subunit polypeptides, J. Biol. Chem. 256: 6452–6462.PubMedGoogle Scholar
  312. Seppä, H. E., Yamada, K. M., Seppä, S. T., Silver, M. H., Kleinman, H. K., and Schiffman, E., 1981, The cell binding fragment of fibronectin is chemotactic for fibroblasts, Cell Biol. Int. Rep. 5: 813–819.PubMedCrossRefGoogle Scholar
  313. Shadle, P. J., and Barondes, S. H., 1982, Adhesion of human platelets to immobilized trimeric collagen, J. Cell Biol. 95: 361–365.PubMedCrossRefGoogle Scholar
  314. Sieber-Blum, M., Sieber, F., and Yamada, K. M., 1981, Cellular fibronectin promotes adrenergic differentiation of quail neural crest cells in vitro, Exp. Cell Res. 133: 285–295.PubMedCrossRefGoogle Scholar
  315. Singer, I. I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts, Cell 16: 675–685.PubMedCrossRefGoogle Scholar
  316. Singer, I. I., 1982, Association of fibronectin and vinculin with focal contacts and stress fibers in stationary hamster fibroblasts, J. Cell Biol. 92: 398–408.PubMedCrossRefGoogle Scholar
  317. Singer, I. I., and Paradiso, P. R., 1981, A transmembrane relationship between fibronectin and vinculin (130 kd protein): Serum modulation in normal and transformed hamster fibroblasts, Cell 24: 481–492.PubMedCrossRefGoogle Scholar
  318. Skorstengaard, K., Thdgersen, H. C., and Petersen, T. E., 1984, Complete primary sequence of the collagen-binding domain of bovine fibronectin, Eur. J. Biochem. 140: 235–243.PubMedCrossRefGoogle Scholar
  319. Smith, K. K., and Strickland, S., 1981, Structural components and characteristics of Reichert’s membrane, an extra-embryonic basement membrane, J. Biol. Chem. 256: 4654–4661.PubMedGoogle Scholar
  320. Solursh, M., Linsenmayer, T. F., and Jensen, K. L., 1982, Chondrogenesis from single limb mesenchyme cells, Dey. Biol. 94: 259–264.CrossRefGoogle Scholar
  321. Speziale, P., Höök, M., Wadstrom, T., and Timpl, R., 1982, Binding of the basement membrane protein laminin to Escherichia coli, FEBS Lett. 146: 55–58.CrossRefGoogle Scholar
  322. Spiegel, E., Burger, M., and Spiegel, M., 1980, Fibronectin in the developing sea urchin embryo, J. Cell Biol. 87: 309–313.PubMedCrossRefGoogle Scholar
  323. Stamatoglou, S. C., and Keller, J. M., 1982, Interactions of cellular glycosaminoglycans with plasma fibronectin and collagen, Biochim. Biophys. Acta 719: 90–97.PubMedCrossRefGoogle Scholar
  324. Stanley, J. R., Alvarez, O. M., Berke, E. W., Jr., Eaglstein, W. H., and Katz, S. I., 1981, Detection of basement membrane zone antigens during epidermal wound healing, J. Invest. Dermatol. 77: 240–243.PubMedCrossRefGoogle Scholar
  325. Stathakis, N. E., and Mosesson, M. W., 1977, Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin-precipitable fraction of plasma, J. Clin. Invest. 60: 855–856.PubMedCrossRefGoogle Scholar
  326. Stemberger, A., and Hörmann, H., 1976, Affinity chromatography on immobilized fibrinogen and fibrin monomer. The behavior of cold-insoluble globulin, Hoppe-Seylers Z. Physiol. Chem. 357: 1003–1005.PubMedGoogle Scholar
  327. Stenn, K. S., 1981, Epibolin: A protein of human plasma that supports epithelial cell movement, Proc. Natl. Acad. Sci. USA 78: 6907–6911.PubMedCrossRefGoogle Scholar
  328. Stenn, K. S., Madri, J. A., Tinghitella, T., and Terranova, V. P., 1983, Multiple mechanisms of dissociated epidermal cell spreading, J. Cell Biol. 96: 63–67.PubMedCrossRefGoogle Scholar
  329. Stoker, M., O’Neill, C., Berryman, S., and Waxman, V., 1968, Anchorage and growth regulation in normal and virus-transformed cells, Int. J. Cancer 3: 383–393.CrossRefGoogle Scholar
  330. Suard, Y. M. L., Haeuptle, M.-T., Farinon, E., and Kraehenbuhl, J.-P., 1983, Cell proliferation and milk protein gene expression in rabbit mammary cell cultures, J. Cell Biol. 96: 1435–1442.PubMedCrossRefGoogle Scholar
  331. Sugrue, S. P., and Hay, E. D., 1981, Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules, J. Cell Biol. 91: 45–54.PubMedCrossRefGoogle Scholar
  332. Sugrue, S. P., and Hay, E. D., 1982. Interaction of embryonic corneal epithelium with exogenous collagen, laminin, and fibronectin: Role of endogenous protein synthesis, Dev. Biol. 92: 97–106.PubMedCrossRefGoogle Scholar
  333. Tamkun, J. W., and Hynes, R. O., 1983, Plasma fibronectin is synthesized and secreted by hepatocytes, J. Biol. Chem. 258: 4641–4647.PubMedGoogle Scholar
  334. Tamura, G. (ed.), 1982, Tunicamycin, Japan Scientific Press, Tokyo.Google Scholar
  335. Tarone, G., Galetto, G., Prat, M., and Comoglio, P. M., 1982, Cell surface molecules and fibronectin-mediated cell adhesion: Effect of proteolytic digestion of membrane proteins, J. Cell Biol. 94: 179–186.PubMedCrossRefGoogle Scholar
  336. Terranova, V. P., Rohrbach, D. H., and Martin, G. R., 1980, Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen, Cell 22: 719–726.PubMedCrossRefGoogle Scholar
  337. Terranova, V. P., Liotta, L. A., Russo, R. G., and Martin, G. R., 1982, Role of laminin in the attachment and metastasis of murine tumor cells, Cancer Res. 42: 2265–2269.PubMedGoogle Scholar
  338. Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M., and Liotta, L. A., 1983, Laminin receptor on human breast carcinoma cells, Proc. Natl. Acad. Sci. USA 80: 444–448.PubMedCrossRefGoogle Scholar
  339. Thiery, J. P., Duband, J.-L., and Delouvée, A., 1982a, Pathways and mechanism of trunk avian neural crest cell migration and localization, Dev. Biol. 93: 324–343.PubMedCrossRefGoogle Scholar
  340. Thiery, J. P., Duband, J.-L., Rutishauser, U., and Edelman, G. M., 1982b, Cell adhesion molecules in early chicken embryogenesis, Proc. Natl. Acad. Sci. USA 79: 6737–6741.PubMedCrossRefGoogle Scholar
  341. Timpl, R., and Martin, G. R., 1982, Components of basement membranes, in: Immunochemistry of the Extracellular Matrix, Volume 2 ( H. Furthmayr, ed.), CRC Press, Boca Raton, Florida, pp. 119–150.Google Scholar
  342. Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J.-M., and Martin, G. R., 1979, Laminin-A glycoprotein from basement membranes, J. Biol. Chem. 254: 9933–9937.PubMedGoogle Scholar
  343. Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H., and Kühn, K., 1981, A network model for the organization of type IV collagen molecules in basement membranes, Eur. J. Biochem. 120: 203–211.PubMedCrossRefGoogle Scholar
  344. Timpl, R., Johansson, S., van Delden, V., Oberbäumer, I., and Höök, M., 1983, Characterization of protease-resistant fragments of laminin mediating attachment and spreading of rat hepatocytes, J. Biol. Chem. 258: 8922–8927.PubMedGoogle Scholar
  345. Toole, B. P., 1981, Glycosaminglycans in morphogenesis, in: Cell Biology of Extracellular Matrix ( E. D. Hay, ed.), Plenum Press, New York, pp. 259–294.CrossRefGoogle Scholar
  346. Toole, B. P., 1982, Developmental Role of hyaluronate, Conn. Tiss. Res. 10: 93–100.CrossRefGoogle Scholar
  347. Trelstad, R. L., and Silver, F. M., 1981, Matrix assembly, in: Cell Biology of Extracellular Matrix ( E. D. Hay, ed.), Plenum Press, New York, pp. 179–215.CrossRefGoogle Scholar
  348. Trinkaus, J. P., 1984, Cells into Organs: The Forces That Shape the Embryo, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  349. Underhill, C. B., Chi-Rosso, G., and Toole, B. P., 1983, Effects of detergent solubilization on the hyaluronate-binding protein from membranes of simian virus 40-transformed 3T3 cells, J. Biol. Chem. 258: 8086–8091.PubMedGoogle Scholar
  350. van De Water, L., III, Schroeder, S., Crenshaw, E. B., III, and Hynes, R. O., 1981, Phagocytosis of gelatin-latex particles by a murine macrophage line is dependent on fibronectin and heparin, J. Cell Biol. 90: 32–39.PubMedCrossRefGoogle Scholar
  351. Vartio, T., 1982, Characterization of the binding domains in the fragments cleaved by cathepsin G from human plasma fibronectin, Eur. J. Biochem. 123: 223–233.PubMedCrossRefGoogle Scholar
  352. Virtannen, I., Vartio, T., Badley, R. A., and Lehto, V. P., 1982, Fibronectin in adhesion, spreading and cytoskeletal organization of cultured fibroblasts, Nature 298: 660–663.CrossRefGoogle Scholar
  353. Vlodaysky, I., and Gospodarowicz, D., 1981, Respective role of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells, Nature 289: 304–306.CrossRefGoogle Scholar
  354. Voss, B., Allam, S., Rauterberg, J., Ullrich, K., Gieselmann, V., and Von Figura, K., 1979, Primary cultures of rat hepatocytes synthesize fibronectin, Biochem. Biophys. Res. Comm. 90: 1348–1354.PubMedCrossRefGoogle Scholar
  355. Vuento, M., 1979, Hemagglutinin activity of human plasma fibronectin, Hoppe-Seylers Z. Physiol. Chem. 360: 1327–1333.PubMedCrossRefGoogle Scholar
  356. Vuento, M., Wrann, M., and Ruoslahti, E., 1977, Similarity of fibronectins isolated from human plasma and spent fibroblast culture medium. FEBS Lett. 82: 227–231.PubMedCrossRefGoogle Scholar
  357. Vuento, M., Salonen, E., Osterlund, K., and Stenman, U. H., 1982, Essential charged amino acids in the binding of fibronectin to gelatin, Biochem. J. 201: 1–8.PubMedGoogle Scholar
  358. Wartiovaara, J., Leivo, I., and Vaheri, A., 1980, Matrix glycoproteins in early mouse development and in differentiation of teratocarcinoma cells, in: The Cell Surface: Mediator of Developmental Processes (S. Subtelny and N. K. Wessels, eds.), Academic Press, New York, pp. 305–324.Google Scholar
  359. Weigel, P. H., Schnaar, R. L., Kuhlenschmidt, M. S., Schmell, E., Lee, R. T., Lee, Y. C., and Roseman, S., 1979, Adhesion of hepatocytes to immobilized sugars: A threshold phenomenon, J. Biol. Chem. 254: 10830–10838.PubMedGoogle Scholar
  360. Weiss, H. F., Baumgartner, H. R., Tschopp, T. B., Turitto, V. T., and Cohen, D., 1978, Correction by factor VIII of the impaired platelet adhesion to subendothelium in von Willebrand disease, Blood 51: 267–279.PubMedGoogle Scholar
  361. Weiss, R. E., and Reddi, A. H., 1981, Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow, J. Cell Biol. 88: 630–636.PubMedCrossRefGoogle Scholar
  362. West, C. M., Lanza, R., Rosenbloom, J., Lowe, M., Holtzer, H., and Avdalovic, N., 1979, Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts, Cell 17: 491–501.PubMedCrossRefGoogle Scholar
  363. Weston, J. A., 1983, Regulation of neural crest cell migration and differentiation, in: Cell Interactions and Development: Molecular Mechanims ( K. M. Yamada, ed.), Wiley, New York, pp. 153–184.Google Scholar
  364. Wewer, U., Albrechtsen, R., and Ruoslahti, E., 1981, Laminin, a noncollagenous component of epithelial basement membranes synthesized by a rat yolk sac tumor, Cancer Res. 41: 1518–1524.PubMedGoogle Scholar
  365. Whateley, J. G., and Knox, P. L., 1980, Isolation of a serum component that stimulates the spreading of cells in culture, Biochem. J. 185: 349–354.PubMedGoogle Scholar
  366. Willingham, M. C., Yamada, K. M., Yamada, S. S., Pouysségur, J., and Pastan, I., 1977, Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts, Cell 10: 375–380.PubMedCrossRefGoogle Scholar
  367. Woodley, D. T., Rao, C. N., Hassell, J. R., Liotta, L. A., Martin, G. R., and Kleinman, H. K., 1983, Interactions of basement membrane components, Biochim. Biophys. Acta 761: 278–283.PubMedCrossRefGoogle Scholar
  368. Wylie, D. E., Damsky, C. H., and Buck, C. A., 1979, Studies on the function of cell surface glycoproteins. I. Use of antisera to surface membranes in the identification of membrane components relevant to cell-substrate adhesion, J. Cell Biol. 80: 385–402.PubMedCrossRefGoogle Scholar
  369. Yamada, K. M., 1980, Fibronectin: Transformation-sensitive cell surface protein, Lymphokine Reports 1: 231–254.Google Scholar
  370. Yamada, K. M., 1983a, Cell surface interactions with extracellular materials, Ann. Rev. Biochem. 52: 761–799.PubMedCrossRefGoogle Scholar
  371. Yamada, K. M., 1983b, Cell Interactions and Development: Molecular Mechanisms, Wiley, New York.Google Scholar
  372. Yamada, K. M., 1984, Structural and functional domains of fibronectin, in: Fibronectin (D. F. Mosher, ed.), Academic Press, New York, in press.Google Scholar
  373. Yamada, K. M., and Kennedy, D. W., 1979, Fibroblast cellular and plasma fibronectins are similar but not identical, J. Cell Biol. 80: 492–498.PubMedCrossRefGoogle Scholar
  374. Yamada, K. M., and Olden, K., 1982, Actions of tunicamycin on vertebrate cells, in: Tunicamycin (G. Tamura, ed.), Japan Scientific Societies Press, Tokyo, pp. 119–144.Google Scholar
  375. Yamada, K. M., Yamada, S. S., and Pastan, I., 1975, The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin, Proc. Natl. Acad. Sci. USA 72: 3158–3162.PubMedCrossRefGoogle Scholar
  376. Yamada, K. M., Yamada, S. S., and Pastan, I., 1976a, Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts, Proc. Natl. Acad. Sci. USA 73: 1217–1221.PubMedCrossRefGoogle Scholar
  377. Yamada, K. M., Ghanian, S. H., and Pastan, I., 1976b, Cell surface protein decreases microvilli and ruffles on transformed mouse and chick cells, Cell 9: 241–245.PubMedCrossRefGoogle Scholar
  378. Yamada, K. M., Schlesinger, D. H., Kennedy, D. W., and Pastan, I., 1977, Characterization of a major fibroblast cell surface glycoprotein, Biochemistry 16: 5552–5559.PubMedCrossRefGoogle Scholar
  379. Yamada, K. M., Olden, K., and Pastan, I., 1978, Transformation-sensitive cell surface protein: Isolation, characterization, and role in cellular morphology and adhesion, Ann. N.Y. Acad. Sci. 312: 256–277.PubMedCrossRefGoogle Scholar
  380. Yamada, K. M., Kennedy, D. W., Kimata, K., and Pratt, R. M., 1980, Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments, J. Biol. Chem. 255: 6055–6063.PubMedGoogle Scholar
  381. Yamada, K. M., Kennedy, D. W., Grotendorst, G. R., and Momoi, T., 1981, Glycolipids: Receptors for fibronectin? J. Cell. Physiol. 109: 343–351.PubMedCrossRefGoogle Scholar
  382. Yamada, K. M., Kennedy, D. W., and Hayashi, M., 1982, Fibronectin in cell adhesion, differentiation and growth, Cold Spring Harbor Conf. Cell Proliferation 9: 131–143.Google Scholar
  383. Yamada, K. M., Critchley, D. R., Fishman, P. H., and Moss, J., 1983, Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells, Exp. Cell Res. 143: 295–302.PubMedCrossRefGoogle Scholar
  384. Yamada, Y., Avvedimento, V. E., Mudryj, M., Ohkubo, H., Vogeli, G., Irani, M., Pastan, I., and de Crombrugghe, B., 1980, The collagen gene: Evidence for its evolutionary assembly by amplification of a DNA segment containing an exon of 54 bp, Cell 22: 887–892.PubMedCrossRefGoogle Scholar
  385. Zardi, L., Siri, A., Carnemolla, B., Santi, L., Gardner, W. D., and Hoch, S. O., 1979, Fibronectin: A chromatin-associated protein? Cell 18: 649–657.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kenneth M. Yamada
    • 1
  • Steven K. Akiyama
    • 1
  1. 1.Membrane Biochemistry Section, Laboratory of Molecular BiologyNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations