Leukocyte Chemotaxis

Mobilization of the Motile Apparatus by N-Formal Chemotactic Peptides
  • Richard G. Painter
  • Algirdas J. Jesaitis
  • Larry A. Sklar


Chemotaxis is a process by which organisms or cells sense and move toward higher concentrations of a chemoattractant or away from noxious agents. Chemotaxis is best understood in simple organisms such as bacteria (see Koshland, 1981; Boyd and Simon, 1982, for reviews) and ameboid cells (see Gerish, 1982, and Chapter 1, by Frazier et al., this volume for a more thorough discussion of chemotaxis in Diclyostelium discoideum amebae). In these simple organisms, chemotactic behavior serves a sensory function which allows the cell to find nutrients and to avoid noxious or toxic agents in an ever-changing environment.


Human Neutrophil Human Polymorphonuclear Leukocyte Photoaffinity Label Chemotactic Peptide Leukocyte Chemotaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella, Exp. Cell Res. 62: 389.PubMedGoogle Scholar
  2. Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Ann. Rev. Biochem. 49: 921.PubMedGoogle Scholar
  3. Allan, R. B., and Wilkinson, P. C., 1978, A visual analysis of chemotactic and chemokinetic locomotion of human neutrophilic leucocytes. Use of a new chemotaxis assay with candida albicans as a gradient source, Exp. Cell Res. 111: 191.Google Scholar
  4. Allen, R. A., Jesaitis, A. J., Sklar, L. A., Cochrane, C. G., and Painter, R. G., 1984, Physiochemical properties of the N-formyl peptide receptor of human neutrophils, Fed. Proc. 43: 1.Google Scholar
  5. Amato, P. A., Unanue, E. R., and Taylor, D. L., 1983, Distribution of actin in spreading macrophages: A comparative study on living and fixed cells, J. Cell. Biol. 96: 750.PubMedGoogle Scholar
  6. Anderson, D. C., Wible, L. J., Hughes, B. J., Smith, C. W., and Brinkley, B. R., 1982, Cytoplasmic microtubules in polymorphonuclear leukocytes: Effect of chemotactic stimulation and colchicine, Cell 31: 719.PubMedGoogle Scholar
  7. Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L., and Pert, C. B., 1977, Demonstration of a receptor on rabbit neutrophils for chemotactic peptides, Biochim. Biophys. Res. Commun. 74: 810.Google Scholar
  8. Autrum, H., 1981, Light and dark adaptation in invertebrates, in: Handbook of Sensory Physiology,, Volume VIIC ( H. Autrum, ed.), Springer, Berlin.Google Scholar
  9. Ball, E. H., and Singer, S. J., 1982, Mitochondria are associated with microtubules and not withintermediate filaments in cultured fibroblasts, Proc. Natl. Acad. Sci.,USA 79: 123.Google Scholar
  10. Becker, E. L., 1979, A multifunctional receptor on the neutrophil for synthetic chemotactic oligopeptides, J. Reticuloendothelial Soc. 26: 701.Google Scholar
  11. Bergman, K., Burke, P. V., Cerda-Olmedo, E., David, C. N., Delbruck, M., Foster, K. W., Goodell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S., and Shropshire, W., Jr., 1969, Phycomyces, Bacteriol. Rev. 33: 99.PubMedGoogle Scholar
  12. Bergmann, J. E., Kupfer, A., and Singer, S. J., 1984, Membrane insertion at the leading edge of motile fibroblasts, Proc. Natl. Acad. Sci.,USA 80: 1367.Google Scholar
  13. Berlin, R. D., and Oliver, J. M., 1978, Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes, J. Cell Biol. 77: 789.PubMedGoogle Scholar
  14. Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci,USA 74: 5031.Google Scholar
  15. Boyd, A., and Simon, M., 1982, Bacterial chemotaxis. Ann. Rev. Physiol. 44: 501.Google Scholar
  16. Burgess, D. R., and Schroeder, T. E., 1977, Polarized bundles of actin filaments with microvilli of fertilized sea urchin eggs, J. Cell Biol. 74: 1032.PubMedGoogle Scholar
  17. Burridge, K., and Feramisco, J., 1980, Microinjection and localization of a 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19: 587.PubMedGoogle Scholar
  18. Burridge, K., and Feramisco, J. R., 1981, a-Actinin and vinculin from non-muscle cells: Calcium sensitive interactions with actin, Cold Spring Harb. Symp. Quant. Biol. 46: 587.Google Scholar
  19. Byers, R. H., and Porter, K. R., 1977, Transformations in the structure of the cytoplasmic ground substance in erythropores during pigment aggregation and dispersion, J. Cell Biol. 75: 541.PubMedGoogle Scholar
  20. Carlsson, L., Nystrom, L.-E., Sundkvist, I., Markey, F., and Lindberg, U., 1977, Actin polymerizability is influenced by profilin, a low molecular weight proten in nonmuscle cells, J. Mol. Biol. 115: 465.PubMedGoogle Scholar
  21. Carlsson, L., Markey, F., Blikstad, I., Persson, T., and Lindberg, U., 1979, Reorganization of actin in platelets stimulated by thrombin as measured by DNAse I inhibition assay. Proc. Natl. Acad. Sci.,USA 76: 6376.Google Scholar
  22. Carp, H., 1982, Mitochondrial N-formyl methionyl proteins as chemoattractants for neutrophils, J. Exp. Med. 155: 264.PubMedGoogle Scholar
  23. Carroll, R. C., and Gerrard, J. M., 1982, Phosphorylation of platelet actin binding protein during platelet activation, Blood 59: 466.PubMedGoogle Scholar
  24. Cramer, E. B., and Gallin, J. I., 1979, Localization of submembraneous cations to the leading end of human neutrophils during chemotaxis, J. Cell Biol. 82: 369.PubMedGoogle Scholar
  25. Davis, B. H., Walter, R. J., Pearson, C. B., Becker, E. L., and Oliver, J. M., 1982, Membrane activity and topography of F-Met-Leu-Phe-treated polymorphonuclear leukocytes, Am. J. Pathol. 108: 206.PubMedGoogle Scholar
  26. Delbruck, M., and Reichhardt, W., 1956, System analysis for the light growth reactions of phycomyces, in: Cellular Mechanisms in Differentiation and Growth, Volume 14 ( D. Rudnick, ed.), Princeton University Press, Princeton, New Jersey, p. 3.Google Scholar
  27. Delbruck, M., and Varju D., 1961, Photoreactions in phycomyces. Responses to the stimulation of narrow test areas with ultraviolet light. J. Gen. Physiol. 44: 1177.Google Scholar
  28. Dennison, D. S., and Bozof, R. P., 1973, Phototropism and local adaptation in Phycomyces sporangiophores,J. Gen. Physiol. 62: 157–168.PubMedGoogle Scholar
  29. Dolmatch, B., and Niedel, J., 1983, Formyl peptide chemotactic receptor: Evidence for an active proteolytic fragment, J. Biol. Chem. 258: 7570.PubMedGoogle Scholar
  30. Edds, K. T., 1977, Microfilament bundles. I. Formation with uniform polarity, Exp. Cell Res. 108: 452.PubMedGoogle Scholar
  31. Elferink, J. G. R., Deierkauf, M., and Riemersma, J. C., 1982, Involvement of calmodulin in granulocyte chemotaxis: The effect of calmodulin inhibitors, Res. Commun. Chem. Pathol. Pharmacol. 38: 77.PubMedGoogle Scholar
  32. Elgsater, A., and Branton, D., 1974, Intramembraneous particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J. Cell. Biol. 63: 1018.Google Scholar
  33. Fechheimer, M., and Zigmond, S. H., 1983, Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides, Cell Motility 3: 349.PubMedGoogle Scholar
  34. Flanagan, J., and Koch, C. L. E., 1978, Cross-linked surface Ig attached to actin, Nature (London) 273: 278.Google Scholar
  35. Fletcher, M. P., and Gallin, J. I., 1982, Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl methionylleucylphenylaline with a density of specific granules, J. Cell Biol. 95: 444a.Google Scholar
  36. Fletcher, M. P., Seligman, B. E., and Gallin, J. I., 1982, Correlation of human neutrophil secretion, chemoattractant receptor mobilization and enhanced functional capacity, J. Immunol. 128: 941.PubMedGoogle Scholar
  37. Fox, J. E. B., and Phillips, D. R., 1982, Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets, J. Biol. Chem. 257: 4120.PubMedGoogle Scholar
  38. Freer, R. J., 1981, Antagonists of the formylated peptide chemoattractants: structure-activity com- parisons with formyl-methionyl-leucyl-phenyl-alanine-OH, KROC Found. Ser. 14: 161.PubMedGoogle Scholar
  39. Freer, R. J., Day, A. R., Radding, J. A., Schiffman, E., Aswanikumar, S., Showell, H. J., and Becker, E. L., 1980, Further studies on the structural requirements for synthetic peptide chemoattractants, Biochemistry 19: 2404.PubMedGoogle Scholar
  40. Freer, R. J., Day, A. R., Muthukumaraswamy, N., Pinon, D., Wu, A., Showell, H. J., and Becker, E. L., 1982, Formyl peptide chemoattractants: A model of the receptor on rabbit neutrophils, Biochemistry 21: 257.PubMedGoogle Scholar
  41. Frey-Wyssling, A., 1957, Macromolecules in Cell Structure, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  42. Gallin, J. I., Wright, D. G., and Schiffmann, E., 1978, Role of secretory events in modulating human neutrophil chemotaxis, J. Clin. Invest. 62: 1364.PubMedGoogle Scholar
  43. Gallin, J. I., Gallin, E. K., and Schiffmann, E., 1979, Mechanism of Leukocyte chemotaxis, in: Advances in Inflammation Research ( G. Weissmann, ed.), Raven Press, New York, pp. 123.Google Scholar
  44. Galvin, N. J., Stockhausen, D., Meyers-Hutchins, B. L., and Frazier, W. A., 1984, Association of the cyclic AMP chemotaxis receptor with the detergent-insoluble cytoskeleton of Dictyostelium discoideum,J. Cell. Biol. 98: 584.PubMedGoogle Scholar
  45. Geiger, B., 1979, A 130K protein from chicken gizzard. Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18: 193.PubMedGoogle Scholar
  46. Geiger, B., Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1980, Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes, Proc. Natl. Acad. Sci.,USA 77: 4127.Google Scholar
  47. Gerish, G., 1982, Chemotaxis in Dictyostelium,Ann. Rev. Physiol. 44: 535.Google Scholar
  48. Gerish, G., and Keller, H. U., 1981, Chemotactic reorientation of granulocytes stimulated with micropipettes containing F-Met-Leu-Phe, J. Cell Sci. 52: 1.Google Scholar
  49. Glenney, J. R., and Weber, K., 1981, Uncoupling of the Ca++ -dependent F-actin severing activity from the F-actin bundling activity of villin by mild in vitro proteolysis, Proc. Natl. Acad. Sci.,USA 78: 2810.Google Scholar
  50. Goetzl, E. J., Foster, D. W., and Goldman, D. W., 1981, Isolation and partial characterization of membrane protein constituents of human neutrophil receptors for chemotactic formyl methionyl peptides, Biochemistry 20: 5717.PubMedGoogle Scholar
  51. Goldman, R. D., Schloss, J. A., and Starger, J. M., 1976, Organizational changes of actin-like microfilaments during animal cell movement, in: Cell Motility,Part A, Volume 3 ( R. D. Goldman, T. Pollard, and J. Rosenbaum, eds. ), Cold Spring Harbor Conferences on Cell Proliferation, p. 217.Google Scholar
  52. Hartwig, J. H., and Stossel, T. P., 1975, Isolation and properties of actin, myosin and a new actin binding protein in rabbit alveolar macrophages, J. Biol. Chem. 250: 5696.PubMedGoogle Scholar
  53. Hartwig, J. H., Davies, W. A., and Stossel, T. P., 1977, Evidence for contractile protein translocation in macrophage spreading, phagocytosis and phagolysosome formation, J. Cell Biol. 75: 956.PubMedGoogle Scholar
  54. Hoffstein, S. T., 1979, Ultrastructural demonstration of calcium loss from local regions of the plasma membrane of surface-stimulated human granulocytes, J. Immunol. 123: 1395.PubMedGoogle Scholar
  55. Hoffstein, S., Goldstein, I. M., and Weissmann, G., 1977, Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation, J. Cell Biol. 73: 242.PubMedGoogle Scholar
  56. Hoffstein, S. T., Friedman, R. S., and Weissmann, G., 1982, Degranulation, membrane addition and shape change during chemotactic factor-induced aggregation of human neutrophils, J. Cell Biol. 95: 234.PubMedGoogle Scholar
  57. Jesaitis, A. J., and Yguerabide, J., 1980, Lateral mobility of plasma membrane lipids and Na+K+-ATPase in cultured canine kidney cells, Fed. Proc. 39: 2050.Google Scholar
  58. Jesaitis, A. J., Naemura, J. R., Painter, R. G., Sklar, L. A., and Cochrane, C. G., 1982a, Intracellular localization of N-formyl chemotactic receptor and Mg+z dependent ATPase in human granulocytes, Biophys. Biochim. Acta 719: 556.Google Scholar
  59. Jesaitis, A. J., Naemura, J. R., Painter, R. G., Schmitt, M., Sklar, L. A., and Cochrane, C. G., 1982b, The fate of the N-formylated chemotactic peptide receptor in stimulated human granulocytes: Subcellular fractionation studies, J. Cell. Biochem. 20: 143.Google Scholar
  60. Jesaitis, A. J., Naemura, J. R., Painter, R. G., Sklar, L. A., and Cochrane, C. G., 1983, The fate of the N-formylated chemotactic peptide in stimulated human granulocytes: Subcellular fractionation studies, J. Biol. Chem. 258: 1968.PubMedGoogle Scholar
  61. Jesaitis, A. J., Naemura, J. R., Sklar, L. A., Cochrane, C. G., and Painter, R. G., 1984, Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: Formulation of high-affinity ligand-receptor complexes in transient association with the cell cytoskeleton, J. Cell. Biol., 98: 1378.PubMedGoogle Scholar
  62. Keller, H. U., and Bessis, M., 1975, Migration and chemotaxis of anucleate cytoplasmic leukocyte fragments, Nature (London) 258: 73.Google Scholar
  63. Keller, H. U., Wissler, J. H., Hess, M. W., and Cottier, H., 1977, Relation between stimulus intensity and neutrophil chemotactic response, Experientia 33: 534.PubMedGoogle Scholar
  64. Keller, H. U., Wissler, J. H., Hess, M. W., and Cottier, H., 1978, Distinct chemokinetic and chemotactic responses in neutrophil granulocytes, Eur. J. Immunol. 8: 1.PubMedGoogle Scholar
  65. Koch, G. L. E., 1981, The anchorage of cell surface receptors to the cytoskeleton, in: Symposium of 2nd International Congress on Cell Biology ( H. G. Schweiger, ed.), Berlin, Springer, p. 321Google Scholar
  66. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1983, Guanine nucleotides modulate the binding affinity of oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes, J. Clin. Invest. 72: 748.PubMedGoogle Scholar
  67. Koppel, K. E., Sheetz, M. P., and Schindler, M., 1981, Matrix control of protein diffusion in biological membranes, Proc. Natl. Acad. Sci.,USA 78: 3576.Google Scholar
  68. Korchak, H. M., Roos, D., Giedd, K. N., Wynkoop, E. M., Vienne, K., Rutherford, L. E., Buyon, J. P., Rich, A. M., and Weissmann, G., 1983a, Granulocytes without degranulation: Neutrophil function in granule-depleted cytoplasts, Proc. Natl. Acad. Sci.,USA 80: 4968.Google Scholar
  69. Korchak, H. M., Vienne, K., Wilkenfeld, C., Roberts, C. S., Rutherford, L. E., Haines, K. A., and Weissmann, G., 1983b, The role of calcium in neutrophil activation-mobilization of multiple calcium pools, J. Cell Biol. 97: 605a.Google Scholar
  70. Korn, E. D., 1978, Biochemistry of actomyosin-dependent cell motility, Proc. Natl. Acad. Sci.,USA 75: 588.Google Scholar
  71. Korn, E. D., 1982, Actin polymerization and its regulation by proteins from non -muscle cells, Physiol. Rev. 62: 672.PubMedGoogle Scholar
  72. Koshland, D. E. Jr.. 1981, Biochemistry of sensing and adaptation in a simple bacterial systc m, Ann. Rev. Biochem. 50: 765.PubMedGoogle Scholar
  73. Kupfer, A., Louvard, D., and Singer, S. J., 1982, Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound, Proc. Natl. Acad. Sci.,USA 79: 2603.Google Scholar
  74. Lazarides, E., and Burridge, K., 1975, a-Actinin: Immunofuorescent localization of a muscle structural protein in nonmuscle cells, Cell 6: 289.Google Scholar
  75. Lazarides, E., and Lindberg, U., 1974, Actin is the naturally occurring inhibitor of deoxyribonuclease. I. Proc. Natl. Acad. Sci. USA 71: 4742.PubMedGoogle Scholar
  76. Luna, E. J., Fowler, V. M., Swanson, J., Branton, D., and Taylor, D. L., 1981, A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial purification of an actin binding activity, J. Cell Biol. 88: 396.PubMedGoogle Scholar
  77. Malawista, S. E., and Chevance, A. de B., 1982, The cytokineplast: Purified, stable and functional motile machinery from human blood polymorphonuclear leukocytes, J. Cell. Biol. 95: 960.PubMedGoogle Scholar
  78. Malech, H. C., Root, R. K., and Gallin, J. I., 1976, Centriole, microtubule and microfilament orientation during human polymorphonuclear leukocyte chemotaxis, Clin. Res. 24: 314A.Google Scholar
  79. Markey, F., Lindberg, U., and Eriksson, L., 1978, Human platelets contain profilin, a potential regulator of actin polymerizability, FEBS Lett. 88: 75.PubMedGoogle Scholar
  80. Mescher, M. F., Jose, M. J. L., and Balk, S. P., 1981, Actin-containing matrix associated with the plasma membrane of murine tumor and lymphoid cells, Nature (London) 289: 139.Google Scholar
  81. Mooseker, M. S. and Tilney, L. G., 1975, The organization of an actin filament-membrane complex: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells, J. Cell Biol. 67: 725.PubMedGoogle Scholar
  82. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977a, Changes in ionic movements across rabbit leukocyte membranes during lysosomal enzyme release, J. Cell Biol. 76: 635.Google Scholar
  83. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977b, Sodium, potassium, and calcium transport across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor, J. Cell. Biol. 73: 428.PubMedGoogle Scholar
  84. Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203: 461.PubMedGoogle Scholar
  85. Nath, J., and Flavin, M., 1983, Tubulin heterogeneity revealed by tyrosinolation in vivo,J. Cell Biol. 91: 19004a.Google Scholar
  86. Nath, J., Flavin, M., and Gallin, J. I., 1982, Tubulin tyrosinolation in human polymorphonuclear leukocytes: Studies in normal subjects and in patients with the Chediak-Higashi Syndrome, J. Cell. Biol. 95: 519.PubMedGoogle Scholar
  87. Nicolson, G. L., 1973, Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles, J. Cell. Biol. 57: 373.PubMedGoogle Scholar
  88. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles, J. Cell. Biol. 59: 395.PubMedGoogle Scholar
  89. Niedel, J. E., 1981, Detergent solubilization of the formyl peptide chemotactic receptor, J. Biol. Chem. 256: 9295.PubMedGoogle Scholar
  90. Niedel, J. E., and Cuatrecasas, P., 1980, Formyl peptide chemotactic reception of leukocytes and macrophages, Curr. Top. Cell Reg. 17: 137.Google Scholar
  91. Niedel, J., Wilkinson, and Cuatrecasas, P., 1979a, Receptor-mediated uptake and degradation of ‘25I-chemotactic peptide by human neutrophils, J. Biol. Chem. 254: 10700.PubMedGoogle Scholar
  92. Niedel, J. E., Kahane, I., and Cuatrecasas, P., 1979b, Receptor mediated internalization of fluorescent chemotactic peptide by human neutrophils, Science 205: 1412.PubMedGoogle Scholar
  93. Niedel, J. E., Davis, J., and Cuatrecasas, P., 1980, Covalent affinity labelling of the formyl peptide chemotactic receptor, J. Biol. Chem. 255: 7063.PubMedGoogle Scholar
  94. O’Farrell, P. H., 1975, High resolution two dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007.PubMedGoogle Scholar
  95. Oliver, J. M., Krawiec, J. A., and Becker, E. L., 1978, The distribution of actin during chemotaxis in rabbit neutrophils, J. Reticuloendothel. Soc. 24:697.Google Scholar
  96. Painter, R. G., and Ginsberg, M. H., 1982, Concanavalin A induces interactions between surface glocoproteins and the platelet cytoskeleton, J. Cell. Biol. 92: 565.PubMedGoogle Scholar
  97. Painter, R. G., and McIntosh, A. T., 1979, The regional association of actin and myosin with sites of particle phagocytosis, J. Supramol. Struct. 12: 369.Google Scholar
  98. Painter, R. G., Whisenand, J., and McIntosh, A. T., 1981, Effects of cytochalasin B on actin and myosin association with particle binding sites in mouse macrophages: Implications with regard to the mechanism of action of the cytochalasins, J. Cell. Biol. 91: 373.PubMedGoogle Scholar
  99. Painter, R. G., Schmitt, M., Jesaitis, A. J., Sklar, L. A., Preissner, K., and Cochrane, C. G., 1982, Photoaffinity labeling of the N-formyl peptide receptor of human polymorphonuclear leukocytes, J. Cell. Biochem. 20: 913.Google Scholar
  100. Painter, R. G., Allen, R. A., Sklar, L. A., Schmitt, M., Cochrane, C. G., and Jesaitis, A. J., Intracellular processing of N-formylated chemotactic peptide receptors by human neutrophils, submitted.Google Scholar
  101. Painter, R. G., Sklar, L. A., Jesaitis, A. J., Schmitt, M., and Cochrane, C. G., 1984, Activation of neutrophils by N-formyl chemotactic peptides, Fed. Proc.,in press.Google Scholar
  102. Pilch, P. F., and Czech, M. P., 1979, Interaction of cross-linking agents with the insulin effector system of isolated fat cells: Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons, J. Biol. Chem. 254: 3375.PubMedGoogle Scholar
  103. Pilch, P. F., and Czech, M. P., 1980, The subunit structure of the high affinity insulin receptor: Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes, J. Biol. Chem. 255: 1722.PubMedGoogle Scholar
  104. Ramsey, W. S., 1972, Analysis of individual leukocyte behavior during chemotaxis, Exp. Cell. Res. 70: 129.PubMedGoogle Scholar
  105. Rao, K. M. K., and Varani, J., 1982, Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils, J. lmmunol. 129: 1605.Google Scholar
  106. Roos, D., Voetman, A. A., and Meerhof, L. J., 1983, Functional activity of enucleated human polymorphonuclear leukocytes, J. Cell. Biol. 97: 368.PubMedGoogle Scholar
  107. Rosenberg, S., Stracher, A., and Burridge, K., 1981, Isolation and characterization of a calcium-sensitive a-actinin-like protein from human platelet cytoskeletons, J. Biol. Chem. 256:12986. Schiffmann, E., 1982, Leukocyte chemotaxis, Ann Rev. Physiol. 44: 553.Google Scholar
  108. Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1975, N-formyl methionyl peptides as chemoattractants for leukocytes, Proc. Natl. Acad. Sci.,USA 72: 1059.Google Scholar
  109. Schlessinger, J., Koppel, D. E., Axelrod, D., Jacobson, K., Webb, W. W., and Elson, E. L., 1976, Lateral transport on cell membranes: Mobility of Concanavalin A receptors on myoblasts, Proc. Natl. Acad. Sci.,USA 73: 2409.Google Scholar
  110. Schmitt, M., Painter, R. G., Jesaitis, A. J., Preissner, K., Sklar, L. A., and Cochrane, C. G., 1983, Photoaffinity labeling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes. Evaluation of a label as suitable to follow the fate of the receptor-ligand complex, J. Biol. Chem. 258: 649.PubMedGoogle Scholar
  111. Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24: 165.PubMedGoogle Scholar
  112. Seligmann, B. E., Fletcher, M. P.. and Gatlin. J. I., 1982. Adaptation of human neutrophil responsiveness to the chemoattractant N-formylmethionylleucylphenylalanine, J. Biol. Chem. 257: 6280.PubMedGoogle Scholar
  113. Sellers, J. R., Pato, M. D., and Adelstein, R. S., 1981, Reversible phosphorylation of smooth muscle myosin, heavy meromyosin and platelet myosin, J. Biol. Chem. 256: 13137.PubMedGoogle Scholar
  114. Sheetz, M. P., Schindler, M., and Koppel, D. G., 1980, Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes, Nature 285: 510.PubMedGoogle Scholar
  115. Shelterline, P., and Hopkins, C. R., 1981, Transmembrane linkage between surface glycoproteins and components of the cytoplasm in neutrophil leukocytes, J. Cell. Biol. 90: 743.Google Scholar
  116. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L., 1976, The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysozomal enzyme secretion for neutrophils, J. Exp. Med. 143: 1154.PubMedGoogle Scholar
  117. Sklar, L. A., 1984, Sensory transduction and ligand-receptor dynamics in the human neutrophil, Fed. Proc. 43: 5.Google Scholar
  118. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 198la, The kinetics of neutrophil activation: The response to chemotactic peptides depends upon whether ligand-receptor interaction is rate-limiting, J. Biol. Chem. 256: 9909.Google Scholar
  119. Sklar, L. A., Oades, Z. G., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981b, Fluoresceinated chemotactic peptide and high affinity antibody to fluorescein as a probe of the temporal characteristics of neutrophil stimulation, Proc. Natl. Acad. Sci.,USA 78: 7540.Google Scholar
  120. Sklar, L. A., Finney, D. A., Oades, Z. G., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1984a, The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation and internalization of an N-formyl peptide and its receptors on the human neutrophil, J. Biol. Chem. 259: 5661.PubMedGoogle Scholar
  121. Sklar, L. A., Jesaitis, A. J., and Painter, R. G., 1984b, The neutrophil N-formyl peptide receptor: The dynamics of ligand/receptor interactions and their relationship to cellular responses, in: Contemporary Topics in Immunobiology, Volume 14 ( R. Snyderman, ed.,) Plenum Press, New York, p. 29.Google Scholar
  122. Small, J. V., Isenberg, G., and Celis, J. E., 1978, Polarity of actin at the leading edge of cultured cells, Nature (London) 272: 638.Google Scholar
  123. Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science 213: 830.PubMedGoogle Scholar
  124. Southwick, F. S., and Stossel, T. P., 1983, Contractile proteins in leukocyte function, Sem. Hematol. 20: 305.Google Scholar
  125. Stendahl, O. I., Hartwig, J. H., Brotschi, E. A., and Stossel, T. P., 1980, Distribution of actin binding protein and myosin in macrophages during spreading and phagocytosis, J. Cell Biol. 84: 215.PubMedGoogle Scholar
  126. Stossel, T. P., 1978, The mechanism of leukocyte locomotion, in: Leukocyte Chemotaxis: Methods,Physiology and Clinical Implications ( J. I. Gatlin and P. G. Quie, eds.), Raven Press, New York, p. 143.Google Scholar
  127. Stossel, T. P., Hartwig, J. H., Yin, H.-L., and Zaner, K. S., 1981, Structure of the cortical cytoplasm. Cold Spring Harb. Symp. Quant. Biol. 46: 569.Google Scholar
  128. Sullivan, S. J., and Zigmond, S. H., 1982, Asymmetric receptor distribution on PMNs, J. Cell. Biol. 95: 418a.Google Scholar
  129. Swanson, J. A., and Taylor, D. L., 1982, Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis, Cell 28: 225.PubMedGoogle Scholar
  130. Taylor, D. L., and Condeelis, J. S., 1979, Cytoplasmic structure and contractibility in ameboid cells, Int. Rev. Cytol. 56: 57.PubMedGoogle Scholar
  131. Taylor, D. L., and Fechheimer, M., 1982, Cytoplasmic structure and contractility: The solation-contraction coupling hypothesis, Phil. Trans. R. Soc. London B. 299: 185.Google Scholar
  132. Taylor, D. L., and Wang, Y. L., 1978, Molecular cytochemistry: Incorporation of fluorescently labeled actin into living cells. Proc. Natl. Acad. Sci.,USA 75: 857.Google Scholar
  133. Taylor, D. L., Hellewell, S. B., Virgin, H. W., and Heiple, J. M., 1979, The solation-contraction coupling hypothesis of cell movements, in: Cell Motility: Molecules and Organization ( S. Hatano, H. Ishikawa, and H. Sato, eds.), University of Tokyo Press, Tokyo, p. 363.Google Scholar
  134. Taylor, D. L., Wang, Y. L., and Heiple, J., 1980a, The contractile basis of ameboid movement, VII. The distribution of fluorescently labeled actin in living amoebas, J. Cell Biol. 86: 590.PubMedGoogle Scholar
  135. Taylor, D. L., Blinks, J. R., and Reynolds, G., 1980b, Contractile basis of ameboid movement. VIII. Aequorin luminescence during ameboid movement, endocytosis and capping, J. Cell Biol. 86: 599.PubMedGoogle Scholar
  136. Taylor, D. L., Heiple, J., Wang, Y.-L., Luna, E. J., Tanasugarn, L., Brier, J., Swanson, J., Fechheimer, M., Amato, P., Rockwell, M., and Daley, G., 1981, Cellular and molecular aspects of amoeboid movement, Cold Spring Harb. Symp. Quant. Biol. 46: 101.Google Scholar
  137. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell. Biol. 94: 325.PubMedGoogle Scholar
  138. Vale, R. D., and Shooter, E. M., 1982, Alteration of binding properties and cytoskeletal attachment of nerve growth factor receptors in PC12 cells by wheat germ agglutinin, J. Cell. Biol. 94: 710.PubMedGoogle Scholar
  139. Valerius, N. H., Stendahl, O. I., Hartwig, J. H., and Stossel, T. P., 1981, Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis, Cell 24: 195.PubMedGoogle Scholar
  140. Valerius, N. H., Stendahl, O. I., Hartwig, J. H., and Stossel, T. P., 1982, Distribution of actin binding protein and myosin in neutrophils during chemotaxis and phagocytosis, Adv. Exp. Med. Biol. 141: 19.PubMedGoogle Scholar
  141. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Cyclic AMP dependent phosphorylation of filamin in smooth muscle, J. Biol. Chem. 253: 4739.PubMedGoogle Scholar
  142. Walter, R. J., and Marasco, W. A., 1983, Localization of 125I-NfNle-leu-phe-nle-tyr-lys on rabbit PMN, J. Cell. Biol. 97: 1590a.Google Scholar
  143. Walter, R. J., Berlin, R. D., and Oliver, J. M., 1980, Asymmetric Fc receptor distribution of human PMN oriented in a chemotactic gradient, Nature 286: 724.PubMedGoogle Scholar
  144. Wang, K., 1977, Filamin a new high molecular weight protein found in smooth muscle and nonmuscle cells. Purification and properties of chicken gizzard filamin, Biochemistry 16: 1857.PubMedGoogle Scholar
  145. Wang, K., Ash, J. F., and Singer, S. J., 1975, Filamin, a new high molecular weight protein found in smooth muscle cells, Proc. Natl. Acad. Sci., USA 72: 4483.Google Scholar
  146. Wang, L.-L., and Bryan, J., 1981, Isolation of calcium-dependent platelet proteins that interact with actin, Cell 25: 637.PubMedGoogle Scholar
  147. Ward, P. A., 1982, The chemotaxis system, Monogr. Pathol. 23: 54.PubMedGoogle Scholar
  148. Webb, W. W., Barak, L. S., Tank, A. W., and Wu, E.-S., 1981, Molecular mobility on the cell surface, Biochem. Soc. Symp. 46: 191.PubMedGoogle Scholar
  149. White, J. R., Naccache, P. H., and Sha’afi, R. I., 1982, The synthetic chemotactic peptide formylmethionyl-leucyl-phenylalanine causes an increases in actin associated with the cytoskeleton in rabbit neutrophils, Biochem. Biophys. Res. Commun. 108: 1144.PubMedGoogle Scholar
  150. Wilkinson, P. C., 1974, Chemotaxis and Inflammation, Churchill-Livingstone, Edinburgh.Google Scholar
  151. Wilkinson, P. C., Michl, J., and Silverstein, S. C., 1980, Receptor distribution in locomoting neutrophils, Cell Biol. Int. Rep. 4: 736.Google Scholar
  152. Williams, L. T., Snyderman, R., Pike, M. C., and Lefkowitz, R. J., 1977, Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci.,USA 74: 1204.PubMedGoogle Scholar
  153. Woda, B. A., Yguerabide, J., and Feldman, J. D., 1980, The effect of local anesthetics on the lateral mobility of lymphocyte membrane proteins, Exp. Cell Res. 126: 327.PubMedGoogle Scholar
  154. Wright, D. G., and Gallin, J. I., 1979, Secretory responses of human neutrophils: exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo,J. lmmunol. 123: 285.Google Scholar
  155. Yeltman, D. R., Jung, G., and Carraway, K. L., 1981, Isolation of a-actinin from sarcoma 180 ascites cell plasma membranes and comparison with smooth muscle a-actinin, Biochim. Biophys. Acta 688: 201.Google Scholar
  156. Yin, H. L., Zaner, K. S., and Stossel, T. P., 1980, Ca’ control of actin gelation, J. Biol. Chem. 255: 9494.PubMedGoogle Scholar
  157. Yin, H. L., Albrecht, J. H., and Faltoum, A., 1981, Identification of gelsolin, a Ca“ dependent regulatory protein of actin gel-sol transformation and its intracellular distribution in a variety of cells and tissues, J. Cell. Biol. 91: 901.PubMedGoogle Scholar
  158. Yip, C. C., Yeung, C. W. T., and Moule, M. L., 1982, Subunit structure of insulin receptor of rat adipocytes as demonstrated by photoaffinity labeling, Biochemistry 21: 2940.PubMedGoogle Scholar
  159. Yuli, I., and Snyderman, R., 1983, Rapid perpendicular light scattering (LS): a previously unrecognized response of human neutrophils (PMNS) to chemoattractants (CTX), Clin. Res. 31: 379AGoogle Scholar
  160. Zigmond, S. H., 1981, Consequences of chemotactic peptide receptor modulation for leukocyte orientation, J. Cell. Biol. 88: 644.PubMedGoogle Scholar
  161. Zigmond, S. H., and Sullivan, S. J., 1979, Sensory adaptation of leukocytes to chemotactic peptides, J. Cell Biol. 82: 517.PubMedGoogle Scholar
  162. Zigmond, S. H., Levitsky, H. J., and Kreel, B. J., 1981, Cell polarity: An examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis, J. Cell. Biol. 89: 585.PubMedGoogle Scholar
  163. Zigmond, S. H., Sullivan, S. J., and Lauffenburger, D. A., 1982, Kinetic analysis of chemotactic receptor modulation, J. Cell. Biol. 92: 34.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Richard G. Painter
    • 1
  • Algirdas J. Jesaitis
    • 1
  • Larry A. Sklar
    • 1
  1. 1.Department of ImmunologyScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations