Sympathoadrenal System

  • L. Landsberg
  • J. B. Young
Part of the Contemporary Endocrinology book series (COE, volume 2)


Previous chapters in this series (The Year in Endocrinology 197576, The Year in Endocrinology 1977, and Contemporary Endocrinology,Volume 1) have considered in depth a variety of topics related to the sympathoadrenal system. Among the topics explored have been the assessment of sympathetic nervous system activity, familial pheochromocytoma, catecholamines and essential hypertension, the sympathoadrenal system and the regulation of hormone secretion, and the role of the sympathoadrenal system in the regulation of metabolism. In recent years, increasing interest has developed in the sympathetic nervous system regulation of thermogenesis, and some of the current literature will be reviewed here. The sympathetic response to acute and chronic cold exposure provides an excellent example of the manner in which sympathetic regulation of metabolism, the vasculature, and hormone secretion may be integrated into a comprehensive physiological response. In addition, the potential role of the sympathetic nervous system in the regulation of dietary thermogenesis will be reviewed, along with implications for obesity, therapeutic dieting, and weight loss. The final section will briefly review some of the recent literature dealing with the diagnosis and localization of pheochromocytoma.


Sympathetic Nervous System Brown Adipose Tissue Sympathetic Activity Cold Exposure Adrenal Medulla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hsieh, A. C. L., Carlson, L. D., and Gray, G., 1957, Role of the sympathetic nervous system in the control of chemical regulation of heat production, Am. J. Physiol. 190: 247–251.PubMedGoogle Scholar
  2. 2.
    Leduc, J., 1961, Catecholamine production and release in exposure and acclimation to cold, Acta Physiol. Scand. 53: 1–101.CrossRefGoogle Scholar
  3. 3.
    Bergh, U., Harley, H., Landsberg, L., and Ekblom, B., 1979, Plasma nor-epinephrine concentrations during submaximal and maximal exercise at lowered skin and core temperatures, Acta Physiol. Scand. 106: 383–384.PubMedCrossRefGoogle Scholar
  4. 4.
    Therminarias, A., Chirpaz, M. F., and Tanche, M., 1979, Catecholamines in dogs during cold adaptation by repeated immersions, J. Appl. Physiol. 46: 662–668.PubMedGoogle Scholar
  5. 5.
    Young, J. B., and Landsberg, L., 1076, Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver, Am. J. Physiol. 236: E524 — E533.Google Scholar
  6. 6.
    Jones, S. B., and Musacchia, X. J., 1976, Norephinephrine turnover in heart and spleen of 7-, 22-, and 34 C-acclimated hamsters, Am. J. Physiol. 230: 564–568.PubMedGoogle Scholar
  7. 7.
    Oliverio, A., and Stjarne, L., 1965, Acceleration of noradrenaline turnover in the mouse heart by cold exposure, Life Sci. 4: 2339–2343.PubMedCrossRefGoogle Scholar
  8. 8.
    Bralet, J., Beley, A., and Lallemant, A. M., 1972, Alterations in norepinephrine turnover in various peripheral organs of the rat during exposure and acclimation to cold, Pfluegers Arch. 335: 186–197.CrossRefGoogle Scholar
  9. 9.
    Tedesco, J. L., Flattery, K. V., and Sellers, E. A., 1977, Effects of thyroid hormones and cold exposure on turnover of norepinephrine in cardiac and skeletal muscle, Can. J. Physiol. Pharmacol. 55: 515–522.PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson, T. S., Young, J. B., and Landsberg, L., 1981, Norepinephrine turnover in lung: Effect of cold exposure and chronic hypoxia, J. Appi. Physiol. 51: 614–620.Google Scholar
  11. 11.
    Iriki, M., Riedel, W., and Simon, E., 1971, Regional differentiation of sympathetic activity during hypothalamic heating and cooling in anesthetized rabbits, Pfluegers Arch. 328: 320–331.CrossRefGoogle Scholar
  12. 12.
    Walther, O. E., Iriki, M., and Simon, E., 1970, Antagonistic changes of blood flow and sympathetic activity in different vascular beds following central thermal stimulation. II. Cutaneous and visceral sympathetic activity during spinal cord heating and cooling in anesthetized rabbits and cats, Pfluegers Arch. 319: 162–184.CrossRefGoogle Scholar
  13. 13.
    Beley, A., Beley, P., Rochette, L., and Bralet, J., 1976, Evolution in vivo of the synthesis rate of catecholamines in various peripheral organs of the rat during cold exposure, Pfluegers Arch. 366: 259–264.CrossRefGoogle Scholar
  14. 14.
    Cannon, W. B., Querido, A., Britton, S. W., and Bright, E. M., 1979, Studies on the conditions of activity in endocrine glands. XXI. The role of adrenal secretion in the chemical control of body temperature, Am. J. Physiol. 79: 466–507.Google Scholar
  15. 15.
    Young, J. B., and Landsberg, L., 1981, Effect of concomitant fasting and cold exposure on sympathoadrenal activity in rats, Am. J. Physiol. 240:E3I4—E319.Google Scholar
  16. 16.
    Jessen, K., Rabol, A., and Winkler, K., 1980, Total body and splanchnic thermogenesis in curarized man during a short exposure to cold, Acta. Anaesthesiol. Scand. 24: 339–344.PubMedCrossRefGoogle Scholar
  17. 17.
    Thompson, G. E., 1977, Physiological effects of cold exposure, in: International Review of Physiology: Environmental Physiology II ( D. Robertshaw, ed.), pp. 29–69, University Park Press, Baltimore.Google Scholar
  18. 18.
    Gale, C. C., 1973, Neuroendocrine aspects of thermoregulation, Annu. Rev. Physiol. 35: 391–430.CrossRefGoogle Scholar
  19. 19.
    Hellon, R. F., 1975, Monoamines, pyrogens and cations: Their actions on central control of body temperature, Pharmacol Rev. 26: 289–321.Google Scholar
  20. 20.
    Blatteis, C. M., 1981, The newer putative central neurotransmitters: Roles in thermoregulation. Hypothalamic substances in the control of body temperature: General characteristics, Fed. Proc. 40: 2735–2740.PubMedGoogle Scholar
  21. 21.
    Himms-Hagen, J., 1975, Role of the adrenal medulla in adaptation to cold, in: Handbook of Physiology, Section VII, Endocrinology ( R. O. Greep and E. B. Astwood, eds.), pp. 637–665, American Physiology Society, Washington, D.C.Google Scholar
  22. 22.
    Feist, D. D., and Feist, C. F., 1978, Catecholamine-synthesizing enzymes in adrenals of seasonally acclimatized voles, J. Appl. Physiol. 44: 59–62.PubMedGoogle Scholar
  23. 23.
    Banet, M., Hensel, H., and Liebermann, H., 1978, The central control of shivering and non-shivering thermogenesis in the rat, J. Physiol. (London) 283: 569–584.Google Scholar
  24. 24.
    Horwitz, B. A., 1979, Metabolic aspects of thermogenesis: Neuronal and hormonal control, Fed. Proc. 38: 2147–2149.PubMedGoogle Scholar
  25. 25.
    Hsieh, A. C. L., and Carlson, L. D., 1957, Role of adrenaline and noradrenaline in chemical regulation of heat production, Am. J. Physiol. 190: 243–246.PubMedGoogle Scholar
  26. 26.
    Hemingway, A., Price, W. M., and Stuart, D., 1964, The calorigenic action of catecholamines in warm acclimated and cold acclimated non-shivering cats, Int. J. Neuropharmacol. 3: 495–503.CrossRefGoogle Scholar
  27. 27.
    Komaromi, I., 1977, Effects of alpha-and beta-adrenergic blockers on the actions of noradrenaline on body temperature in the newborn guinea-pig, Experientia 33: 1083–1084.PubMedCrossRefGoogle Scholar
  28. 28.
    Schonbaum, E., Johnson, G. E., Sellers, E. A., and Gill, M. J., 1966, Adrenergic beta-receptors and non-shivering thermogenesis, Nature (London) 210: 426.CrossRefGoogle Scholar
  29. 29.
    LeBlanc, J., Vallieres, J., and Vachon, C., 1972, Beta-receptor sensitization by repeated injections of isoproterenol and by cold adaptation, Am. J. Physiol. 222: 1043–1046.PubMedGoogle Scholar
  30. 30.
    Sellers, E. A., and Schonbaum, E., 1963, Catecholamines in acclimation to cold: Historical survey, Fed. Proc. 22: 909–910.PubMedGoogle Scholar
  31. 31.
    Hsieh, A. C. L., and Wang, J. C. C., 1971, Calorigenic responses to cold of rats after prolonged infusion of norepinephrine, Am. J. Physiol. 221: 335–337.PubMedGoogle Scholar
  32. 32.
    Jung, R. T., Shetty, P. S., James, W. P. T., Barrand, M. A., and Callingham, B. A., 1979, Reduced thermogenesis in obesity, Nature (London) 279: 322–323.CrossRefGoogle Scholar
  33. 33.
    Davis, T. R. A., and Johnston, D. R., 1961, Seasonal acclimatization to cold in man, J. Appl. Physiol. 16: 231–234.PubMedGoogle Scholar
  34. 34.
    Scholander, P. F., Hammel, H. T., Lange Anderson, K., and Loyning, Y., 1958, Metabolic acclimatization to cold in man, J. Appl. Physiol. 12: 1–8.PubMedGoogle Scholar
  35. 35.
    Budd, G. M., and Warhaft, N., 1966, Cardiovascular and metabolic responses to noradrenaline in man, before and after acclimatization to cold in Artarctica, J. Physiol. (London) 186: 233–242.Google Scholar
  36. 36.
    Davis, T. R. A., 1961, Chamber cold acclimatization in man, J. Appl. Physiol. 16: 1011–1015.PubMedGoogle Scholar
  37. 37.
    Joy, R. J. T., 1963, Responses of cold-acclimated men to infused norepinephrine, J. Appl. Physiol. 18: 1209–1212.PubMedGoogle Scholar
  38. 38.
    Mejsnar, J., and Jansky, L., 1976, Mode of catecholamine action during organ regulation of nonshivering thermogenesis, in: Regulation of Depressed Metabolism and Thermogenesis ( L. Jansky and X. J. Musacchia, eds.), pp. 225–242, Thomas, Springfield, Ill.Google Scholar
  39. 39.
    Depocas, F., 1958, Chemical thermogenesis in the functionally eviscerated cold-acclimated rat, Can. J. Biochem. Physiol. 36: 691–699.PubMedCrossRefGoogle Scholar
  40. 40.
    Depocas, F., 1960, The calorigenic response to cold-acclimated white rats to infused noradrenaline, Can. J. Biochem. Physiol. 38: 107–114.PubMedCrossRefGoogle Scholar
  41. 41.
    Depocas, F., 1960, Calorigenesis from various organ systems in the whole animal, Fed. Proc. 5: 19–24.Google Scholar
  42. 42.
    Davis, T. R. A., 1967, Contribution of skeletal muscle to nonshivering thermogenesis in the dog, Am. J. Physiol. 213: 1423–1426.PubMedGoogle Scholar
  43. 43.
    Jansky, L., and Hart, J. S., 1963, Participation of skeletal muscle and kidney during nonshivering thermogenesis in cold-acclimated rats, Can. J. Biochem. Physiol. 41: 953–964.PubMedCrossRefGoogle Scholar
  44. 44.
    Guernsey, D. L., and Stevens, E. D., 1977, The cell membrane sodium pump as a mechanism for increasing thermogenesis during cold acclimation in rats, Science 196: 908–910.PubMedCrossRefGoogle Scholar
  45. 45.
    Horwitz, B. A., and Eaton, M., 1977, Ouabain-sensitive liver and diaphragm respiration in cold-acclimated hamster, J. Appl. Physiol. 42: 150–153.PubMedGoogle Scholar
  46. 46.
    Greenway, D. C., and Himms-Hagen, J., 1978, Increased calcium uptake by muscle mitochondria of cold-acclimated rats, Am. J. Physiol. 234:C7—C 13.Google Scholar
  47. 47.
    Himms-Hagen, J., Behren, W., Hbous, A., and Greenway, D., 1976, Altered mitochondria in skeletal muscle of cold acclimated rats and the adaptation for nonshivering thermogenesis, in: Regulation of Depressed Metabolism and Thermogenesis ( L. Jansky and X. J. Musacchia, eds.), pp. 243–260, Thomas, Springfield, Ill.Google Scholar
  48. 48.
    Kurahashi, M., and Kuroshima, A., 1978, Creatine metabolism in skeletal muscle of cold-acclimated rats, J. Appl. Physiol. 44: 12–16.PubMedGoogle Scholar
  49. 49.
    Foster, D. O., and Frydman, M. L., 1978, Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by nor-adrenaline, Can. J. Physiol. Pharmacol. 56: 110–122.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith, R. E., and Horwitz, B. A., 1969, Brown fat and thermogenesis, Physiol. Rev. 49: 330–425.PubMedGoogle Scholar
  51. 51.
    Cottle, M. K. W., and Cottle, W. H., 1970, Adrenergic fibers in brown fat of cold-acclimated rats, J. Histochem. Cytochem. 18: 116–119.PubMedCrossRefGoogle Scholar
  52. 52.
    Young, J. B., Saville, E., Rothwell, N. J., Stock, M. J., and Landsberg, L., 1982, Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat, J. Clin. Invest. 69: 1061–1071.PubMedCrossRefGoogle Scholar
  53. 53.
    Hull, D., and Segall, M. M., 1965, Sympathetic nervous control of brown adipose tissue and heat production in the new-born rabbit, J. Physiol. (London) 181: 458–467.Google Scholar
  54. 54.
    Horwitz, B. A., 1979, Cellular events underlying catecholamine-induced thermogenesis: Cation transport in brown adipocytes, Fed. Proc. 38: 2170–2176.PubMedGoogle Scholar
  55. 55.
    Slavin, B. G., and Bernick, S., 1974, Morphological studies on denervated brown adipose tissue, Anat. Rec. 179: 497–506.PubMedCrossRefGoogle Scholar
  56. 56.
    Alexander, G., and Stevens, D., 1980, Sympathetic innervation and the development of structure and function of brown adipose tissue: Studies on lambs chemically sympathectomized in utero with 6-hydroxydopamine, J. Dev. Physiol. 2: 119–137.PubMedGoogle Scholar
  57. 57.
    Foster, D. O., Depocas, F., and Frydman, M. L., 1980, Noradrenalineinduced calorigenesis in warm-and cold-acclimated rats: Relations between concentration of noradrenaline in arterial plasma, blood flow to differently located masses of brown adipose tissue, and calorigenic response, Can. J. Physiol. Pharmacol. 58: 915–924.PubMedCrossRefGoogle Scholar
  58. 58.
    Fink, S. A., and Williams, J. A., 1976, Adrenergic receptors mediating depolarization in brown adipose tissue, Am. J. Physiol. 231: 700–706.PubMedGoogle Scholar
  59. 59.
    Bukowiecki, L., Follea, N., Paradis, A., and Collet, A., 1980, Stereospecific stimulation of brown adipocyte respiration by catecholamines via beta-ladrenoreceptors, Am. J. Physiol. 238: E552 — E563.PubMedGoogle Scholar
  60. 60.
    Himms-Hagen, J., 1976, Cellular thermogenesis, Annu. Rev. Physiol. 38: 315–351.PubMedCrossRefGoogle Scholar
  61. 61.
    Desautels, M., and Himms-Hagen, J., 1979, Roles of noradrenaline and protein synthesis in the cold-induced increase in purine nucleotide binding by rat brown adipose tissue mitochondria, Can. J. Biochem. 57: 968–976.PubMedGoogle Scholar
  62. 62.
    Rabbi, T., Cassuto, Y., and Gutman, A., 1977, Lipolysis in brown adipose tissue of cold-and heat-acclimated hamsters, J. Appl. Physiol. 43: 1007–1011.Google Scholar
  63. 63.
    Lindberg, O., Bieber, L. L., and Houstek, J., 1976, Brown adipose tissue metabolism: An attempt to apply results from in vitro experiments on tissue in vivo, in: Regulation of Depressed Metabolism and Thermogenesis ( L. Jansky and X. J. Musacchia, eds.), pp. 117–136, Thomas, Springfield, Ill.Google Scholar
  64. 64.
    Leblanc, J., and Villemaire, A., 1970, Thyroxine and noradrenaline on noradrenaline sensitivity, cold resistance, and brown fat, Am. J. Physiol. 218: 1742–1745.PubMedGoogle Scholar
  65. 65.
    Rothwell, N. J., and Stock, M. J., 1980, Similarities between cold-and diet-induced thermogenesis in the rat, Can. J. Physiol. Pharmacol. 58: 842–848.CrossRefGoogle Scholar
  66. 66.
    Himms-Hagen, J., 1972, Lipid metabolism during cold-exposure and during cold-acclimation, Lipids 7: 310–323.PubMedCrossRefGoogle Scholar
  67. 67.
    Maickel, R. P., Matussek, N., Stern, D. N., and Brodie, B. B., 1967, The sympathetic nervous system as a homeostatic mechanism. I. Absolute need for sympathetic nervous function in body temperature maintenance of cold-exposed rats, J. Pharmacol. Exp. Ther. 157: 103–110.PubMedGoogle Scholar
  68. 68.
    Gilgen, A., Maickel, R. P., Nikodijevic, O., and Brodie, B. B., 1962, Essential role of catecholamines in the mobilization of free fatty acids and glucose after exposure to cold, Life Sci. 12: 709–715.CrossRefGoogle Scholar
  69. 69.
    Depocas, F., 1961, Biochemical changes in exposure and acclimation to cold environments, Br. Med Bull. 17: 25–31.PubMedGoogle Scholar
  70. 70.
    LaFrance, L., Lagace, G., and Routhier, D., 1980, Free fatty acid turnover and oxygen consumption: Effects of noradrenaline in nonfasted and non-anesthetized cold-adapted rats, Can. J. Physiol. Pharmacol. 58: 797–804.CrossRefGoogle Scholar
  71. 71.
    Maekubo, H., Moriya, K., and Hiroshige, T., 1977, Role of ketone bodies in nonshivering thermogenesis in cold-acclimated rats, J. Appl. Physiol. 42: 159–165.PubMedGoogle Scholar
  72. 72.
    Radomski, M. W., and Orme, T., 1971, Response of lipoprotein lipase in various tissues to cold exposure, Am. J. Physiol. 220: 1852–1856.PubMedGoogle Scholar
  73. 73.
    Sugahara, M., Baker, D. H., Harmon, B. G., and Jensen, A. H., 1969, Effect of ambient temperature and dietary amino acids on carcass fat deposition in rats, J. Nutr. 98: 344–350.PubMedGoogle Scholar
  74. 74.
    Kodama, A. M., and Pace, N., 1964, Effect of environmental temperature on hamster body fat composition, J. Appl. Physiol. 19: 863–867.PubMedGoogle Scholar
  75. 75.
    O’Hara, W. J., Allen, C., Shephard, R. J., and Allen, G., 1979, Fat loss in the cold—A controlled study, J. Appl. Physiol. Respir. Environ. Exercise Physiol. 46: 872–877.Google Scholar
  76. 76.
    Rosell, S., and Belfrage, E., 1979, Blood circulation in adipose tissue, Physiol. Rev. 59: 1078–1104.PubMedGoogle Scholar
  77. 77.
    Maickel, R., Sussman, H., Yamada, K., and Brodie, B., 1963, Control of adipose tissue lipase activity by the sympathetic nervous system, Life Sci. 3: 210–214.CrossRefGoogle Scholar
  78. 78.
    Beck. L. V., Zaharko, D. S., and Kaiser, S. C., 1967, Variation in serum insulin and glucose of rats with chronic cold exposure, Life Sci. 6: 1501–1506.CrossRefGoogle Scholar
  79. 79.
    Baum, D., and Porte, D., 1971, Alpha-adrenergic inhibition of immunoreactive insulin release during deep hypothermia, Am. J. Physiol. 221: 303–311.PubMedGoogle Scholar
  80. 80.
    Raven, P. B., Niki, I., Dahms, T. E., and Horvath, S. M., 1970, Compensatory cardiovascular responses during an environmental cold stress, 5°C, J. Appl. Physiol. 29: 417–421.PubMedGoogle Scholar
  81. 81.
    Janssens, W. J., and Vanhoutte, P. M., 1979, Instantaneous changes of alpha-adrenoceptor affinity caused by moderate cooling in canine cutaneous veins, Am. J. Physiol. 234: H330 — H337.Google Scholar
  82. 82.
    Webb-Peploe, M. M., and Shepard, J. T., 1968, Responses of the superficial limb veins of the dog to changes in temperature, Circ. Res. 22: 737–746.CrossRefGoogle Scholar
  83. 83.
    Millard, R. W., and Reite, O. B., 1975, Peripheral vascular response to norepinephrine at temperatures from 2 to 40°C, J. Appl. Physiol. 38: 26–30.PubMedGoogle Scholar
  84. 84.
    Budd, G. M., and Warhaft, N., 1966, Body temperature, shivering blood pressure and heart rate during a standard cold stress in Australia and Antarctica, J. Physiol. (London) 186: 216–232.Google Scholar
  85. 85.
    Wasserstrum, N., and Herd, J. A., 1977, Elevation of arterial blood pressure in the squirrel monkey at 10°C, Am. J. Physiol. 232: H459 — H463.PubMedGoogle Scholar
  86. 86.
    LeBlanc, J., Dulac, S., Cote, J., and Girard, B., 1975, Autonomic nervous system and adaptation to cold and man, J. Appl. Physiol. 39: 181–186.PubMedGoogle Scholar
  87. 87.
    Fregly, M. J., Field, F. P., Nelson, E. L., Tyler, P. E., and Dasler, R., 1977, Effect of chronic exposure to cold on some responses to catecholamines, J. Appl. Physiol. 42: 149–154.Google Scholar
  88. 88.
    Koo, A., and Liang, I. Y. S., 1978, Microvascular responses to norepinephrine in skeletal muscle of cold-acclimated rats, J. Appl. Physiol. 44: 190–194.PubMedGoogle Scholar
  89. 89.
    Landsberg, L., and Young, J. B., 1981, Diet-induced changes in sympathoadrenal activity: Implications for thermogenesis and obesity, Obesity Me-tab. 1: 5–33.Google Scholar
  90. 90.
    Rothwell, N. J., and Stock, M. J., 1979, A role for brown adipose tissue in diet-induced thermogenesis, Nature (London) 281: 31–35.CrossRefGoogle Scholar
  91. 91.
    Young, J. B., and Landsberg, L., 1977, Suppression of sympathetic nervous system during fasting, Science 196: 1473–1475.PubMedCrossRefGoogle Scholar
  92. 92.
    Young, J. B., and Landsberg, L., 1979, Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver, Am. J. Physiol. 236: E524 — E533.Google Scholar
  93. 93.
    Rappaport, E. B., Young, J. B., and Landsberg, L., 1981, Impact of age on basal and diet-induced changes in sympathetic nervous system activity of Fischer rats, J. Gerontol. 36: 152–157.PubMedCrossRefGoogle Scholar
  94. 94.
    Young, J. B., Saville, E., Rothwell, N. J., Stock, M. J., and Landsberg, L., 1982, Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue in the rat, J. Clin. Invest. 69: 1061–1071.PubMedCrossRefGoogle Scholar
  95. 95.
    Rappaport, E. B., Young, J. B., and Landsberg, L., 1982, Effects of 2deoxy-D-glucose on the cardiac sympathetic nerves and the adrenal medulla in the rat: Further evidence for a dissociation of sympathetic nervous system and adrenal medullary responses, Endocrinology 110: 650–656.PubMedCrossRefGoogle Scholar
  96. 96.
    Jung, R. T., Shetty, P. S., Berrand, M., Callingham, B. A., and James, W. P. T., 1979, Role of catecholamines in hypotensive response to dieting, Br. Med. J. 1: 12–13.PubMedCrossRefGoogle Scholar
  97. 97.
    DeHaven, J., Sherwin, R., Hendler, R., and Felig, P., 1980, Nitrogen and sodium balance and sympathetic-nervous-system activity in obese subjects treated with a low-calorie protein or mixed diet, N. Engl. J. Med. 302: 477–482.PubMedCrossRefGoogle Scholar
  98. 98.
    Gross, H. A., Lake, C. R., Ebert, M. H., Ziegler, M. G., and Kopin, I. J., 1979, Catecholamine metabolism in primary anorexia nervosa, J. Clin. Endocrinol. Metab. 49: 805–809.PubMedCrossRefGoogle Scholar
  99. 99.
    Santiago, J. A., Clarke, W. L., Shah, S. D., and Cryer, P. E., 1980, Epinephrine, norepinephrine, glucagon, and growth hormone release in association with physiological decrements in the plasma glucose concentration in normal and diabetic man, J. Clin. Endocrinol. Metab. 51: 877–883.PubMedCrossRefGoogle Scholar
  100. 100.
    Wimpfheimer, C., Saville, E., Voirol, M. J., Danforth, E., Jr., and Burger, A. G., 1979, Starvation-induced decreased sensitivity of resting metabolic rate to triiodothyronine, Science 205: 1272–1273.PubMedCrossRefGoogle Scholar
  101. 101.
    Shetty, P. S., Jung, R. T., and James, W. P., 1979, Effect of catecholamine replacement with levodopa on the metabolic response to semistarvation, Lancet 1: 77–79.PubMedCrossRefGoogle Scholar
  102. 102.
    Burke, D., Sundlof, G., and Wallin, G., 1977, Postural effects on muscle nerve sympathetic activity in man, J. Physiol. (London) 272: 399–414.Google Scholar
  103. 103.
    Amer, P., Engfeldt, P., and Nowak, J., 1981, In vivo observations on the lipolytic effect of noradrenaline during therapeutic fasting, J. Clin. Endocrinol. Metab. 53: 1207–1212.Google Scholar
  104. 104.
    Young, J. B., Rowe, J. W., Pallotta, J. A., Sparrow, D., and Landsberg, L., 1980, Enhanced plasma norepinephrine response to upright posture and glucose administration in elderly human subjects, Metabolism 29: 532–539.PubMedCrossRefGoogle Scholar
  105. 105.
    Welle, S., Lilavivathana, U., and Campbell, R. G., 1980, Increased plasma norepinephrine concentrations and metabolic rates following glucose ingestion in man, Metabolism 29: 806–809.PubMedCrossRefGoogle Scholar
  106. 106.
    Welle, S., Lilivivat, U., and Campbell, R. G., 1981, Thermic effect of feeding in man: Increased plasma norepinephrine levels following glucose but not protein or fat consumption, Metabolism 30: 953–958.PubMedCrossRefGoogle Scholar
  107. 107.
    Zwillich, C., Martin, B., Hofeldt, F., Charles, A., Subryan, V., and Burman, K., 1981, Lack of effects of beta sympathetic blockade on the metabolic and respiratory responses to carbohydrate feeding, Metabolism. 30: 451–456.PubMedCrossRefGoogle Scholar
  108. 108.
    Young, J. B., and Landsberg, L., 1977, Stimulation of the sympathetic nervous system during sucrose feeding, Nature 269: 615–617.PubMedCrossRefGoogle Scholar
  109. 109.
    Rappaport, E. B., Young, J. B., and Landsberg, L., 1982, Initiation, duration, and dissipation of diet-induced changes in sympathetic nervous system activity, in the rat, Metabolism 31: 143–146.PubMedCrossRefGoogle Scholar
  110. 110.
    Schwartz, J., Young, J. B., and Landsberg, L., 1982, Increased cardiac sympathetic nervous system (SNS) activity with fat (lard) feeding: A more potent stimulus than sucrose, Clin. Res. 30: 247A.Google Scholar
  111. 111.
    Katzeff, H. L., and Danforth, E., Jr., 1981, The thermogenic response. to norepinephrine, food and exercise in lean man during overfeeding, Clin. Res. 29: 663A.Google Scholar
  112. 112.
    Rothwell, N. J., and Stock, M. J., 1981, Influence of noradrenaline on blood flow to brown adipose tissue in rats exhibiting diet-induced thermogenesis, Pfluegers Arch. 389: 237–242.CrossRefGoogle Scholar
  113. 113.
    Brooks, S. L., Rothwell, N. J., Stock, M. J., Goodbody, A. E., and Trayhurn, P., 1980, Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis, Nature (London) 286: 274–276.CrossRefGoogle Scholar
  114. 114.
    Rothwell, N. J., Saville, M. E., Stock, M. J., and Wyllie, M. G., 1982, Catecholamine and thyroid hormone influence on brown fat Na+K+-ATPase activity and thermogenesis in the rat, Norm. Metab. Res. 14: 261–265.CrossRefGoogle Scholar
  115. 115.
    Young, J. B., and Landsberg, L., 1981, Effect of concomitant fasting and cold exposure on sympathoadrenal activity in rats, Am. J. Physiol. 240: E314 — E319.PubMedGoogle Scholar
  116. 116.
    Landsberg, L., and Young, J. B., 1981, Diet-induced changes in sympathoadrenal activity: Implications for thermogenesis, Life Sci. 28: 1801–1817.PubMedCrossRefGoogle Scholar
  117. 117.
    Young, J. B., and Landsberg, L., 1979, Sympathoadrenal activity in fasting pregnant rats: Dissociation of adrenal medullary and sympathetic nervous system responses, J. Clin. Invest. 64: 109–116.PubMedCrossRefGoogle Scholar
  118. 118.
    Landsberg, L., Greff, L., Gunn, S., and Young, J. B., 1980, Adrenergic mechanisms in the metabolic adaptation to fasting and feeding: Effects of phlorizin on diet-induced changes in sympathoadrenal activity in the rat, Metabolism 29: 1128–1137.PubMedCrossRefGoogle Scholar
  119. 119.
    Van Houten, M., and Posner, B. I., 1981, Cellular basis of direct insulin action in the central nervous system, Diabetologia 20: 255–267.PubMedCrossRefGoogle Scholar
  120. 120.
    Oomura, Y., and Kita, H., 1981, Insulin acting as a modulator of feeding through the hypothalamus, Diabetologia 20: 290–298.PubMedCrossRefGoogle Scholar
  121. 121.
    Rowe, J. W., Young, J. B., Minaker, K. L., Stevens, A. L., Pallotta, J., and Landsberg, L., 1981, Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man, Diabetes 30: 219–225.PubMedGoogle Scholar
  122. 122.
    Shimazu, T., and Takahashi, A., 1980, Stimulation of hypothalamic nuclei has differential effects on lipid synthesis in brown and white adipose tissue, Nature (London) 284: 62–63.CrossRefGoogle Scholar
  123. 123.
    Perkins, M. N., Rothwell, N. J., Stock, M. J., and Stone, T. W., 1981, Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus, Nature (London) 289: 401–402.CrossRefGoogle Scholar
  124. 124.
    Shimazu, T., 1981, Central nervous system regulation of liver and adipose tissue metabolism, Diabetologia 20: 343–356.PubMedCrossRefGoogle Scholar
  125. 125.
    Young, J. B., and Landsberg, L., 1980, Impaired suppression of sympathetic activity during fasting in the gold thioglucose-treated mouse, J. Clin. Invest. 65: 1086–1094.PubMedCrossRefGoogle Scholar
  126. 126.
    Niijima, A., 1981, Visceral afferents and metabolic function, Diabetologia 20: 325–330.PubMedCrossRefGoogle Scholar
  127. 127.
    Bravo, E. L., Tarazi, R. C., Gifford, R. W., and Stewart, B. H., 1979, Circulating and urinary catecholamines in pheochromocytoma: Diagnostic and pathophysiologic implication, N. Engl. J. Med. 301: 682–686.PubMedCrossRefGoogle Scholar
  128. 128.
    Bravo, E. L., Tarazi, R. C., Fouad, F. M., Vidt, D. G., and Gifford, R. W., Jr., 1981, Clonidine-suppression test: A useful aid in the diagnosis of pheochromocytoma, N. Engl. J. Med. 305: 623–626.PubMedCrossRefGoogle Scholar
  129. 129.
    Brown, M. J., Jenner, D. A., Allison, D. J., Lewis, P. J., and Dollery, C. T., 1981, Increased sensitivity and accuracy of phaeochromocytoma diagnosis achieved by use of plasma-adrenaline estimations and a pentoliniumsuppression test, Lancet 1: 174–177.PubMedCrossRefGoogle Scholar
  130. 130.
    Laursen, K., and Damgaard-Pedersen, K., 1980, CT for pheochromocytoma diagnosis, Am. J. Roentgenol. 134: 277–280.Google Scholar
  131. 131.
    Thomas, J. L., Bernardino, M. E., Samaan, N. A., and Hickey, R. C., 1980, CT of pheochromocytoma, Am. J. Roentgenol. 135: 477–482.Google Scholar
  132. 132.
    Thomas, J. L., and Bernardino, M. E., 1981, Pheochromocytoma in multiple endocrine adenomatosis: Efficacy of computed tomography, J.A.M.A. 245: 1467–1469.PubMedCrossRefGoogle Scholar
  133. 133.
    Ganguly, A., Henry, D. P., Yune, H. Y., Pratt, J. H., Grim, C. E., Donohue, J. P., and Weinberger, M. H., 1979, Diagnosis and localization of pheochromocytoma: Detection by measurement of urinary norepinephrine excretion during sleep, plasma norepinephrine concentration and computerized axial tomography (CT-scan), Am. J. Med. 67: 21–26.PubMedCrossRefGoogle Scholar
  134. 134.
    Paulubinskas, A. J., Roizen, M. F., and Conte, F. A., 1980, Localization of functioning pheochromocytomas by venous sampling and radioenzymatic analysis, Radiology 136: 495–496.Google Scholar
  135. 135.
    Jones, D. H., Reid, J. L., Hamilton, C. A., Allison, D. J., Welbourn, R. B., and Dollery, C. T., 1980, The biochemical diagnosis, localization and follow up of phaeochromocytoma: The role of plasma and urinary catecholamine measurements, Q. J. Med. 49: 341–361.PubMedGoogle Scholar
  136. 136.
    Sisson, J. C., Frager, M. S., Valk, T. W., Gross, M. D., Swanson, D. P., Wieland, D. M., Tobes, M. C., Beierwaltes, W. H., and Thompson, N. W., 1981, Scintigraphic localization of pheochromocytoma, N. Engl. J. Med. 305: 12–17.PubMedCrossRefGoogle Scholar
  137. 137.
    Valk, T. W., Frager, M. S., Gross, M. D., Sisson, J. C., Wieland, D. M., Swanson, D. P., Mangner, T. J., and Beierwaltes, W. H., 1981, Spectrum of pheochromocytoma in multiple endocrine neoplasia: A scintigraphic portrayal using 1311-metaiodobenzylguanidine, Ann. Intern. Med. 94: 762–767.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • L. Landsberg
    • 1
    • 2
  • J. B. Young
    • 1
    • 2
  1. 1.Departments of MedicineBeth Israel Hospital, Charles A. Dana Research InstituteBostonUSA
  2. 2.Thorndike LaboratoriesHarvard Medical SchoolBostonUSA

Personalised recommendations