• Dorothy T. Krieger
Part of the Contemporary Endocrinology book series (COE, volume 2)


Since the last review of this subject, a number of new concepts have emerged in neuroendocrinology. It is increasingly evident that the so-called “hypothalamic releasing factors” have a widespread distribution both within the extrahypothalamic central and peripheral nervous system as well as in nonneural tissues. This is also true for peptides, i.e., vasopressin and oxytocin, previously believed to be exclusively distributed from their site of origin in the magnocellular nuclei to the posterior pituitary. An ever-increasing number of peptides, originally described as originating within the pituitary or the gastrointestinal tract, have now been described within the CNS, with evidence for some that they are synthesized within the CNS as well as in their previously described sites of origin. Questions have arisen concerning the functional significance of these new findings with regard to fundamental physiological processes, and preliminary information suggests multiple interactions between these various peptides as well as with the “classical” CNS neurotransmitters.


Growth Hormone Prolactin Level Thyrotropin Release Hormone Prolactin Secretion Prolactin Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krieger, D. T., Liotta, A., and Brownstein, M. J., 1977, Presence of adrenocorticotropin in brain of normal and hypophysectomized rats, Proc. Natl. Acad. Sci. USA 74: 648–652.PubMedGoogle Scholar
  2. 2.
    Mains, R. E., Eipper, B., and Ling, M., 1977, Common precursor to corticotropins and endorphins, Proc. Natl. Acad. Sci. USA 74: 3014–3018.PubMedGoogle Scholar
  3. 3.
    Roberts, J. L., and Herbert, E., 1977, Characterization of a common precursor to corticotropin and ß-lipotropin: Identification of 13-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system, Proc. Natl. Acad. Sci. USA 74: 5300–5304.PubMedGoogle Scholar
  4. 4.
    Liotta, A. S., Gildersleeve, D., Brownstein, M. J., and Krieger, D. T., 1979, Biosynthesis in vitro of immunoreactive 31,000-dalton corticotropin/G3-endorphin-like material by bovine hypothalamus, Proc. Natl. Acad. Sci. USA 76: 1448–1452.PubMedGoogle Scholar
  5. 5.
    Krieger, D. T., Liotta, A. S., Brownstein, M. J., and Zimmerman, E. A., 1980, ACTH, 13-lipotropin and related peptides in brain, pituitary, and blood, Recent Prog. Norm. Res. 36: 272–344.Google Scholar
  6. 6.
    Liotta, A. S., Loudes, C., McKelvy, J. F., and Krieger, D. T., 1980, Biosynthesis of precursor corticotropin/endorphin, corticotropin, a-melanotropin, 13-lipotropin, and (3-endorphin like material by cultured neonatal rat hypothalamic neurons, Proc. Natl. Acad. Sci. USA 77: 1880–1884.PubMedGoogle Scholar
  7. 7.
    Smyth, D., Massey, D. E., Zakarian, S., and Finnic, M., 1979, Endorphins are stored in biologically active and inactive forms: Isolation of a-N-acetyl peptides, Nature (London) 279: 252–254.Google Scholar
  8. 8.
    Liotta, A. S., Yamaguchi, H., and Krieger, D. T., 1981, Biosynthesis and release of r3-endorphin, N-acetyl I3-endorphin, I3-endorphin (1–27), and N-acetyl I3-EP (1–27) like peptides by rat pituitary neurointermediate lobe: (3-Endorphin is not further processed by anterior lobe, J. Neurosci. 1: 585–595.PubMedGoogle Scholar
  9. 9.
    Sachs, H., and Takabatke, Y., 1964, Evidence for a precursor in vasopressin synthesis, Endocrinology 75: 943–948.PubMedGoogle Scholar
  10. 10.
    Russell, J. T., Brownstein, M. J., and Gainer, H., 1980, Biosynthesis of vasopressin, oxytocin, and neurophysins: Isolation and characterization of two common precursors (propresophysin and prooxyphysin), Endocrinology 107: 1880–1891.PubMedGoogle Scholar
  11. 11.
    Schmale, J., and Richter, D., 1981, Immunological identification of a common precursor to arginine vasopressin and neurophysin II synthe–sized by in vitro translation of bovine hypothalamic mRNA, Proc. Natl. Acad. Sci. USA 787:. 766–769Google Scholar
  12. 12.
    Nicholas, P., Carnier, M., Lauber, M., Masse, M. O., Mohring, J., and Cohen, P., 1980, Immunological identification of high molecular weight forms common to bovine neurophysin and vasopressin, Proc. Natl. Acad. Sci. USA 77: 2587–2591.Google Scholar
  13. 13.
    Arimura, A., Sato, J., Dupont, A., Nishi, N., and Schally, A. V., 1975, Somatostatin: Abundance of immunoreactive hormone in rat stomach and pancreas, Science 189: 1007–1009.PubMedGoogle Scholar
  14. 14.
    Noe, B. D., Fletcher, D. J., Bauer, G. E., Weir, G. C., and Patel, Y., 1978, Somatostatin biosynthesis occurs in pancreatic islets, Endocrinology 102: 1675–1685.PubMedGoogle Scholar
  15. 15.
    Ensinck, U. W., Laschansky, E. C., Kanter, R. A., Fujimoto, W. Y., Koerker, D. J., and Goodner, C. H., 1978, Somatostatin biosynthesis and release in the hypothalamus and pancreas of the rat, Metabolism 27: 1207–1210.PubMedGoogle Scholar
  16. 16.
    Conlon, M. J., Zyznar, E., Vale, W., and Under, R. H., 1978, Multiple forms of somatostatin-like immunoreactivity in canine pancreas, FEBS Lett. 94: 327–330.PubMedGoogle Scholar
  17. 17.
    Lauber, M., Carnier, M., and Cohen, P., 1979, Higher molecular weight forms of immunoreactive somatostatin in mouse hypothalamic extracts: Evidence of processing in vitro, Proc. Natl. Acad. Sci. USA 76: 6004–6008.PubMedGoogle Scholar
  18. 18.
    Patzelt, C., Tager, H. S., Carroll, R. J., and Steiner, D. F., 1980, Identification of prosomatostatin in pancreatic islets, Proc. Natl. Acad. Sci. USA 77: 2410–2414.PubMedGoogle Scholar
  19. 19.
    Pradayrol, L., Jornvall, H., Mutt, V., and Ribert, A., 1980, N-terminally extended somatostatin: The primary structure of somatostatin 28, FEBS Lett. 109: 55–58.PubMedGoogle Scholar
  20. 20.
    Schally, A. V., Huang, W.-Y., Chang, R. C. C., Arimura, A., Redding, T., Millar, R. P., Hunkapiller, M. W., and Hood, L. E., 1980, Isolation and structure of pro-somatostatin: A putative somatostatin precursor from pig hypothalamus, Proc. Natl. Acad. Sci. USA 77: 4489–4493.PubMedGoogle Scholar
  21. 21.
    Meyers, C. A., Murphy, W. A., Tedding, T. W., Coy, D. H., and Schally, A. V., 1980, Synthesis and biological actions of prosomatostatin, Proc. Natl. Acad. Sci. USA 77: 6171–6174.PubMedGoogle Scholar
  22. 22.
    Goodman, R. H., Jacobs, J. W., Chin, W. W., Lund, P. K., Dee, P. C., and Habener, J. F., 1980, Nucleotide sequence of a cloned structural gene coding for a precursor of pancreatic somatostatin, Proc. Nat. Acad. Sci. USA 77: 5869–5873.PubMedGoogle Scholar
  23. 23.
    Genazzani, A. R., Hurliman, J., Fioretti, P., and Felber, J. P., 1974, In vitro synthesis of an ACTH-like hormone and human chorionic somatomammotrophin by placental and amniotic cells, Experientia 30: 430.Google Scholar
  24. 24.
    Genazzani, A. R., Fraioli, F., Hurliman, J., Fioretti, P., and Felber, J. P., 1975, Immunoreactive ACTH and cortisol plasma levels during pregnancy. Detection and partial purification of corticotrophin-like placental hormone: The human chorionic corticotrophin (HCC), Clin. Endocrinol. (Oxford) 4: 1–14.Google Scholar
  25. 25.
    Rees, L. H., Burke, C. W., Evans, S. W., and Letchworth, A. T., 1975, Possible placental origin of ACTH in normal human pregnancy, Nature (London) 254: 620–622.Google Scholar
  26. 26.
    Liotta, A. S., Osathanondh, R., Ryan, K. J., and Krieger, D. T., 1977, Presence of ACTH in human placenta: Demonstration of in vitro synthesis, Endocrinology 101: 1552–1558.PubMedGoogle Scholar
  27. 27.
    Nakai, Y., Nakao, K., Oki, S., and Imura, H., 1978, Presence of immunoreactive 13-lipotropin and r3-endorphin in human placenta, Life Sci. 23: 2013–2018.PubMedGoogle Scholar
  28. 28.
    Clark, D., Thody, A. J., Shuster, S., and Bowers, H., 1978, Immunoreactive a-MSH in human plasma in pregnancy, Nature (London) 273: 163–164.Google Scholar
  29. 29.
    Odagiri, E., Sherrell, B. J., Mount, C. D., Nicholson, W. E., and Orth, D. N., 1979, Human placental immunoreactive corticotropin, lipotropin, and I3-endorphin: Evidence for a common precursor, Proc. Natl. Acad. Sci. USA 76: 2027–2031.PubMedGoogle Scholar
  30. 30.
    Liotta, A. S., and Krieger, D. T., 1980, In vitro biosynthesis and comparative posttranslational processing of immunoreactive precursor corticotropin/ßendorphin by human placental and pituitary cells, Endocrinology 106: 1504–1511.Google Scholar
  31. 31.
    Vandesande, F., Dierickx, K., and DeMey, J., 1975, Identification of the vasopressin—neurophysin producing neurons of the rat suprachiasmatic nuclei, Cell Tissue Res. 156: 377–380.PubMedGoogle Scholar
  32. 32.
    Buijs, R. M., 1980, Immunocytochemical demonstration of vasopressin and oxytocin in the rat brain by light and electron microscopy, J. Histochem. Cytochem. 28: 357–360.PubMedGoogle Scholar
  33. 33.
    Ono, T., Nishino, H., Sasaka, K., Muramoto, K., Yano, I., and Simpson, A., 1978, Paraventricular nucleus connections to spinal cord and pituitary, Neurosci. Lett. 10: 141–146.PubMedGoogle Scholar
  34. 34.
    Elde, R., and Hökfelt, T., 1978, Distribution of hypothalamic hormones and other peptides in the brain, in: Frontiers in Neuroendocrinology, Volume 5 ( W. F. Ganong and L. Martini, eds.), pp. 1–34, Raven Press, New York.Google Scholar
  35. 35.
    van Wimersma Greidanus, T. B., Croiset, G., Bakker, E., and Bouman, H., 1979, Amygdaloid lesions block the effect of neuropeptides (vasopressin, ACTH 4–10) on avoidance behavior, Physiol. Behay. 22: 291–295.Google Scholar
  36. 36.
    Krisch, B., and Leonhardt, H., 1979, Demonstration of a somatostatin-like activity in retinal cells of the rat, Cell Tissue Res. 204: 127–140.Google Scholar
  37. 37.
    Yamada, T., Marshak, D., Basinger, S., Walsh, J., Morley, J., and Stell, W., 1980, Somatostatin-like immunoreactivity in the retina, Proc. Natl. Acad. Sci. USA 77: 1691–1695.PubMedGoogle Scholar
  38. 38.
    Larsson, L.-I., Golterman, N., de Magistris, L., Rehfeld, J. F., and Schwartz, T. W., 1979, Somatostatin cell processes as pathways for paracrine secretion, Science 205: 1393–1395.Google Scholar
  39. 39.
    Bolaffi, J. L., Reichlin, S., Goodman, D. B. P., and Forrest, J. N., Jr., 1980, Somatostatin: Occurrence in urinary bladder epithelium and renal tubules of the toad, Bufo marinus, Science 210: 644–646.PubMedGoogle Scholar
  40. 40.
    Forrest, J. N., Jr., Reichlin, S., and Goodman, D. B. P., 1980, Somatostatin: An endogenous peptide in the toad urinary bladder inhibits vasopressinstimulated water flow, Proc. Natl. Acad. Sci. USA 77: 4984–4987.PubMedGoogle Scholar
  41. 41.
    Silverman, A. J., and Krey, L. C., 1978, The luteinizing hormone-releasing hormone (LH-RH) neuronal networks of the guinea pig brain. 1. Intra-and extra-hypothalamic projections, Brain Res. 157: 233–246.Google Scholar
  42. 42.
    Brownstein, M. J., 1980, Distribution of hypothalamic hormones, in: The Endocrine Functions of the Brain ( M. Motta, ed.), pp. 143–154, Raven Press, New York.Google Scholar
  43. 43.
    Clayton, R. N., Harwood, J. P., and Catt, K. J. 1979, Gonadotropin-releasing hormone analogue binds to luteal cells and inhibits progesterone production, Nature (London) 282: 90–92.Google Scholar
  44. 44.
    Clayton, R. N., Katikineni, M., Chan, V., Dufau, M. L., and Catt, K. J., 1980, Direct inhibition of testicular function by gonadotropin-releasing hormone: Mediation by specific gonadotropin-releasing hormone receptors in interstitial cells, Proc. Natl. Acad. Sci. USA 77: 4459–4463.PubMedGoogle Scholar
  45. 45.
    Khodr, G. S., and Siler-Khodr, T., 1978, Localization of luteinizing hormone-releasing factor in the human placenta, Fertil. Steril. 29: 523–526.PubMedGoogle Scholar
  46. 46.
    Ying. S. Y., and Guillemin, R., 1980, Gonadocrinins: Peptides in ovarian follicular fluid stimulating the secretion of pituitary gonadotropins, 62nd Annual Meeting of the Endocrine Society, p. 114, Abstract No. 158.Google Scholar
  47. 47.
    Sharpe, R. M., and Fraser, H. M., 1980, HCG stimulation of testicular LHRH-like activity, Nature (London) 287: 642–643.Google Scholar
  48. 48.
    Youngblood, W. W., Lipton, M. A., and Kizer, J. S., 1978, TRH-like immunoreactivity in urine, serum, and extrahypothalamic brain: Non-identity with synthetic Pyroglu-His-pro-NH2 (TRH), Brain Res. 151: 99–116.PubMedGoogle Scholar
  49. 49.
    Kreider, M. S., Winokur, A., and Utiger, R. D., 1979, TRH immunoreactivity in rat hypothalamus and brain: Assessment by gel filtration and thin-layer chromatography, Brain Res. 171: 161–165.PubMedGoogle Scholar
  50. 50.
    Spindel, E., and Wurtman, R., 1979, Immunoreactive thyrotropin releasing hormone (TRH) outside the hypothalamus really is TRH, Soc. Neurosci. Abstr. 5: 539.Google Scholar
  51. 51.
    Morley, J. E., Garvin, T. J., Pekary, A. E., and Hershman, J. M., 1977, Thyrotropin-releasing hormone in the gastrointestinal tract, Biochem. Biophys. Res. Commun. 79: 314–318.PubMedGoogle Scholar
  52. 52.
    Leppaluoto, J., Koivulsalo, F., and Kraama, R., 1978, Thyrotropin-releasing factor: Distribution in neural and gastrointestinal tissues, Acta Physiol. Scand. 104: 175–179.PubMedGoogle Scholar
  53. 53.
    Gibbons, J. M., Mitnick, M., and Chiefo, V., 1975, In vitro biosynthesis of TSH- and LH-releasing factors by the human placenta, Am. J. Obstet. Gynecol. 121: 127–131.PubMedGoogle Scholar
  54. 54.
    de Kloet, R., and de Wied, D., 1980, The brain as target tissue for hormones of pituitary origin: Behavioral and biochemical studies, in: Frontiers in Neuroendocrinology, Volume 6 ( L. Martini and W. F Ganong, eds.), pp. 157–202, Raven Press, New York.Google Scholar
  55. 55.
    Sandman, C. A., George, J., Walker, B.B., Nolan, J. D., and Kastin, A. J., 1976, Neuropeptide MSH-ACTH 4–10 enhances attention in the mentally retarded, Pharmacol. Biochem. Behay. 5 (Suppl. 1): 23–28.Google Scholar
  56. 56.
    Sandman, C. A., and Kastin, A. J., 1978, A behavioral strategy for the CNS actions of the neuropeptides, in: Current Studies of Hypothalamic Function, Volume 2(K. Lederis and W. L. Veale, eds.), pp. 163–174, Karger, Basel.Google Scholar
  57. 57.
    Bohus, B., 1979, Effects of ACTH-like neuropeptides on animal behavior and man, Pharmacology 18: 113–122.PubMedGoogle Scholar
  58. 58.
    Legros, J. J., Gilot, P., Seron, X., Claessens, J., Adam, A., Moeglen, J. M., Audibert, A., and Berthier, P., 1978, Influence of vasopressin on learning and memory, Lancet 1: 41–42.PubMedGoogle Scholar
  59. 59.
    Oliveros, J. C., Jandali, M. K., Timsit-Berthier, M., Remy, R., Benghezal, A., Audibert, A., and Moeglin, J. M., 1978, Vasopressin in amnesia, Lancet 1: 42–43.PubMedGoogle Scholar
  60. 60.
    Anderson, L. T., Davis, R., Bonnet, K., and Dancis, J., 1979, Passive avoidance learning in Lesch—Nyhan disease: Effect of 1-desamino-8-arginine vasopressin, Life Sci. 24: 905–910.PubMedGoogle Scholar
  61. 61.
    Jenkins, J. S., Mather, H. M., Coughland, A. K., and Jenkins, D. G., 1979, Desmopressin in post-traumatic amnesia, Lancet 2: 1245–1246.PubMedGoogle Scholar
  62. 62.
    Gibbs, J., Young, E. C., and Smith, G. P., 1973, Cholecystokinin elicits satiety in rats with open gastric fistulas, Nature (London) 245: 323–325.Google Scholar
  63. 63.
    Vijayan, E., and McCann, S. M., 1979, Suppression of feeding and drinking activity in rats following intraventricular injection of thyrotropin releasing hormone (TRH), Endocrinology 100: 1727–1730.Google Scholar
  64. 64.
    Woods, S. C., Lotter, E. C., McKay, L. D., and Porte, D., Jr., 1979, Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons, Nature (London) 282: 503–505.Google Scholar
  65. 65.
    Straus, E., and Yalow, R. S., 1979, Cholecystokinin in the brains of obese and nonobese mice, Science 203: 68–69.PubMedGoogle Scholar
  66. 66.
    Schneider, B. S., Monahan, J. W., and Hirsch, J., 1979, Brain cholecystokinin and nutritional status in rats and mice, J Clin. Invest. 64: 1136–1147.Google Scholar
  67. 67.
    Oku, J., Glick, Z., Shimomura, Y., Inoue, S., Bray, G. A., and Walsh, J., 1980, Cholecystokinin and obesity, Clin. Res. 28: 281A.Google Scholar
  68. 68.
    Ho, P., and Hansky, J., 1979, Cholecystokinin (CCK)-like peptide in gut and brain of normal and genetically obese mice, Gastroenterology 76: 1155A.Google Scholar
  69. 69.
    Gibson, M. J., and Krieger, D. T., 1980, Altered CNS–pituitary function in Zucker (falfa) fatty rats: Absent circadian periodicity of activity, feeding, and plasma corticosterone (B) concentrations and elevated brain and pituitary neurointermediate (NI) lobe beta-endorphin (B-EP) concentrations, Soc. Neurosci. Abstr. 6: 118.Google Scholar
  70. 70.
    Gambert, S. R., Garthwait, T. L., Pontzer, C. H., and Hagen, T. C., 1980, Fasting associated with decrease in hypothalamic I3-endorphin, Science 210: 1271–1272.PubMedGoogle Scholar
  71. 71.
    Morley, J. E., 1980, The neuroendocrine control of appetite: The role of the endogenous opiates, cholecystokinin, TRH, gamma-amino-butyric acid and the diazepam receptor, Life Sci. 27: 355–368.PubMedGoogle Scholar
  72. 72.
    Carraway, R. E., Demers, L. M., and Leeman, S. E., 1976, Hyperglycemic effect of neurotensin, a hypothalamic peptide, Endocrinology 99: 1452–1462.PubMedGoogle Scholar
  73. 73.
    Brown, M., and Vale, W., 1979, Bombesin—A putative mammalian neurogastrointestinal peptide, Trends Neurosci. 2: 95–97.Google Scholar
  74. 74.
    Morley, J. E., and Levine, A. S., 1980, Intraventricular cholecystokininoctapeptide (CCK-8) produces hyperglycemia and hypothermia, Clin. Res. 28: 721A.Google Scholar
  75. 75.
    Blackburn, A. M., Fletcher, D. R., Adrian, T. E., and Bloom, S. R., 1980, Neurotensin infusion in man: Pharmacokinetics and effect on gastrointestinal and pituitary hormones, J. Clin. Endocrinol. Metab. 51: 1257–1261.PubMedGoogle Scholar
  76. 76.
    Wardlaw, S. L., Wehrenberg, W. B., Ferin, M., Carmel, P. W., and Frantz, A. G., 1980, High levels of (3-endorphin in hypophyseal portal blood, Endocrinology 106: 1323–1326.PubMedGoogle Scholar
  77. 77.
    Simantov, R., and Snyder, S. H., 1977, Opiate receptor binding in the pituitary gland, Brain Res. 124: 178–184.PubMedGoogle Scholar
  78. 78.
    Rivier, C., Vale, W., Ling, N., Brown, M., and Guillemin, R., 1977, Stimulation in vivo of the secretion of prolactin and growth hormone by 13- endorphin, Endocrinology 100: 238–240.PubMedGoogle Scholar
  79. 79.
    Grandison, L., Fratta, W., and Guidotti, A., 1980, Location and characterization of opiate receptors regulating pituitary secretion, Life Sci. 26: 1633–1642.PubMedGoogle Scholar
  80. 80.
    Shaar, C. J., Frederickson, R. C. A., Dininger, N. B., and Jackson, L., 1977, Enkephalin analogues and naloxone modulate the release of growth hormone and prolactin—Evidence for regulation by an endogenous opioid peptide in brain, Life Sci. 21: 853–860.PubMedGoogle Scholar
  81. 81.
    Enjalbert, A., Rubert, M., Arancibia, S., Priam, M., and Kordon, C., 1979, Endogenous opiates block dopamine inhibition of prolactin secretion in vitro, Nature (London) 280: 595–597.Google Scholar
  82. 82.
    Wardlaw, S. L., Wehrenberg, W. B., Ferin, M., and Frantz, A. G., 1980, Failure of 13-endorphin to stimulate prolactin release in the pituitary stalk-sectioned monkey, Endocrinology 107: 1663–1666.PubMedGoogle Scholar
  83. 83.
    Deyo, S. N., Swift, R. M., and Miller, R. J., 1979, Morphine and endorphins modulate dopamine turnover in rat median eminence, Proc. Natl. Acad. Sci. USA 76: 3006–3009.PubMedGoogle Scholar
  84. 84.
    Van Vugt, D. A., Bruni, J. F., Sylvester, P. W., Chen, H. T., Ieiri, T., and Meites, J., 1979, Interaction between opiates and hypothalamic dopamine on prolactin release, Life Sci. 24: 2361–2367.PubMedGoogle Scholar
  85. 85.
    Wilkes, M. M., Fulton, S. L., and Yen, S. S. C.,1980, Attenuation by (3-endorphin ((3-EP) of efflux of dopamine (DA) and its deaminated metabolite from superfused medial basal hypothalamus (MBH) in vitro, 62nd Annual Meeting of the Endocrine Society, p. 152.Google Scholar
  86. 86.
    Gudelsky, G. A., and Porter, J. C., 1978, Morphine-and opioid-induced increase in striatal dopamine turnover, Life Sci. 23: 961–970.Google Scholar
  87. 87.
    Spampinato, S., Locatelli, V., Cocchi, D., Vincentini, L., Bajusz, S., Ferri, S., and Muller, E. E., 1979, Involvement of brain serotonin in the prolactin releasing effect of opioid peptides, Endocrinology 105: 163–170.PubMedGoogle Scholar
  88. 88.
    Tolis, G., Hickey, J., and Guyda, H., 1975, Effects of morphine on serum growth hormone, cortisol, prolactin and thyroid stimulating hormone in man, J. Clin. Endocrinol. Metab. 41: 797–800.PubMedGoogle Scholar
  89. 89.
    Foley, K. M., Inturrisi, C. E., Kourides, I. A., Kaiko, R. F., Posner, J. B., Houde, R. W., and Li, C, H., 1978, Intravenous (iv) and intraventricular (ivt) administration of beta-endorphin (ßH-EP) in man: Safety and disposition, in: Characteristics and Function of Opioids U. M. van Ree and L. Terenius, eds.), pp. 421–422, Elsevier/North-Holland, Amsterdam.Google Scholar
  90. 90.
    Lehmann, H., Nair, N. P. V., and Kline, N. S., 1979, (3-Endorphin and naloxone in psychiatric patients: Clinical and biological effects, Am. J. Psychiatry 136: 762–766.Google Scholar
  91. 91.
    Catlin, D. H., Polane, R. E., Gorelick, D. A., Gerner, R. H., Hui, K. K., Rubin, R. T., and Li, C. H., 1980, Intravenous infusion of 13-endorphin increases serum prolactin, but not growth hormone or cortisol, in depressed subjects and withdrawing methadone addicts, J. Clin. Endocrinol. Metab. 50: 1021–1025.PubMedGoogle Scholar
  92. 92.
    Wakabayashi, I., Demura, R., Mike, N., Ohmura, E., Miyoshi, H., and Shizume, K., 1980, Failure of naloxone to influence plasma growth hormone, prolactin, and cortisol secretions induced by insulin hypoglycemia, J. Clin. Endocrinol. Metab. 50: 597–599.PubMedGoogle Scholar
  93. 93.
    Volavka, J., Bauman, J., Pevnick, J., Reker, D., James, B., and Cho, D., 1980, Short-term hormonal effects of naloxone in man, Psychoneuroendocrinology 5: 225–234.PubMedGoogle Scholar
  94. 94.
    Veldhuis, J. D., Worgul, T. J., Monsaert, R., and Hammond, J. M., 1980, A possible role for endogenous opioids in the control of prolactin and luteinizing-hormone secretion in the human, Clin. Res. 28: 269A.Google Scholar
  95. 95.
    Martin, J. B., Tolis, G., Woods, I., and Guyda, H., 1979, Failure of naloxone to influence physiological growth hormone and prolactin secretion, Brain Res. 168: 210–215.PubMedGoogle Scholar
  96. 96.
    Spiler, I. J., and Molitch, M. E., 1980, Lack of modulation of pituitary hormone stress response by neural pathways involving opiate receptors, J. Clin. Endocrinol. Metab. 50: 516–520.PubMedGoogle Scholar
  97. 97.
    Blankstein, J., Reyes, R. I., Winter, J. S. D., and Faiman, C., 1980, Effects of naloxone upon prolactin and cortisol in normal women, Proc. Soc. Exp. Biol. Med. 164: 363–372.PubMedGoogle Scholar
  98. 98.
    Quigley, M. E., Sheehan, K. L., Casper, R. F., and Yen, S. S. C., 1980, Evidence for an increased opioid inhibition of luteinizing hormone secretion in hyperprolactinemic patients with pituitary microadenoma, J. Clin. Endocrinol. Metab. 50: 427–430.PubMedGoogle Scholar
  99. 99.
    Quigley, M. E., and Yen, S. S. C., 1980, The role of endogenous opiates on LH secretions during the menstrual cycle, J. Clin. Endocrinol. Metab. 51: 179–181.PubMedGoogle Scholar
  100. 100.
    Jeffcoate, W. J., Rees, L. H., McLoughlin, L., Ratter, S. J., Hope, J., Lowry, P. J., and Besser, G. M., 1978, 13-Endorphin in human cerebrospinal fluid, Lancet 2: 119–121.Google Scholar
  101. 101.
    Liotta, A. S., and Krieger, D. T., 1980, Electrophoretic heterogeneity of rat brain and pituitary immunoreactive (immuno) beta-endorphin (EP), 62nd Annual Meeting of the Endocrine Society, p. 221.Google Scholar
  102. 102.
    Liotta, A. S., and Houghten, R., 1980, Charge heterogeneity of human pituitary and plasma immunoreactive (immuno) 3-endorphin (3-EP), Clin. Res. 28: 480A.Google Scholar
  103. 103.
    Dunger, D. B., Leonard, J. V., Wolff, O. H., and Preece, M. A., 1980, Effect of naloxone in a previously undescribed hypothalamic syndrome, Lancet 1: 1277–1281.PubMedGoogle Scholar
  104. 104.
    Brandt, N. J., Terenius, L., Jacobsen, B. B., Klinken, L., Nordius, A., Brandt, S., Blegvad, K., and Yssing, M., 1980, Hyper-endorphin syndrome in a child with necrotizing encephalomyelopathy, N. Engl. J. Med. 303: 914–916.PubMedGoogle Scholar
  105. 105.
    Jacquet, P., Guibout, M., Jaquet, C., Grisoli, F., Conte Devolx, B., Dumas, D., and Bert, J., 1980, Circadian regulation of growth hormone secretion after treatment in acromegaly, J. Clin. Endocrinol. Metab. 50: 322–328.Google Scholar
  106. 106.
    Arafah, B. M., Brodkey, J. S., Kaufman, B., Velasco, M., Manni, A., and Pearson, O. H., 1980, Transsphenoidal microsurgery in the treatment of acromegaly and gigantism, J. Clin. Endocrinol. Metab. 50: 578–585.PubMedGoogle Scholar
  107. 107.
    Fine, S. A., and Frohman, L. A., 1978, Loss of central nervous system component of dopaminergic inhibition of prolactin secretion in patients with prolactin-secreting pituitary tumors, J. Clin. Invest. 61: 973–980.PubMedGoogle Scholar
  108. 108.
    Crosignani, P. G., Ferrari, C., Malinverni, A., Barbieri, C., Mattei, A. M., Caldara, R., and Rochetti, M., 1980, Effect of central nervous system dopaminergic activation on prolactin secretion in man: Evidence for a common central defect in hyperprolactinemia patients with and without radiological signs of pituitary tumors, J. Clin. Endocrinol. Metab. 51: 1068–1073.PubMedGoogle Scholar
  109. 109.
    Pilotte, N. S., Gudelsky, G. A., and Porter, J. C., 1976, Relationship of dopamine turnover in the median eminence to dopamine concentration in hypophysial portal plasma and prolactin release, Soc. Neurosci. Abstr. 5: 476.Google Scholar
  110. 110.
    St. George Tucker, J., Lankford, H. V., Gardner, D. G., and Blackard, W. G., 1980, Persistent defect in regulation of prolactin secretion after successful pituitary tumor removal in women with the galactorrhea—amenorrhea syndrome, J. Clin. Endocrinol. Metab. 51: 968–971.Google Scholar
  111. 111.
    Frantz, A. G., Cogen, P. H., Chang, C. H., and Holub, D. A., 1981, Longterm evaluation of the results of transsphenoidal surgery and radiotherapy in patients with prolactinoma, in: Endocrinology of Human Infertility: New Aspects (P. Crosignani and B. L. Rubin, eds.), Grune & Stratton, New York.Google Scholar
  112. 112.
    Tyrrell, J. B., Brooks, R. M., Fitzgerald, P. A., Cofoid, P. B., Forsham, P. H., and Wilson, C. B., 1978, Selective trans-sphenoidal resection of pituitary microadenomas, N. Engl. J. Med. 298: 753–758.PubMedGoogle Scholar
  113. 113.
    Salassa, R. M., Laws, E. R., Jr., Carpenter, P. C., and Northcutt, R. C., 1978, Transsphenoidal removal of pituitary microadenoma in Cushing’s disease, Mayo Clin. Proc. 53: 24–28.PubMedGoogle Scholar
  114. 114.
    Bigos, S. T., Somma, M., Rasio, E., Eastman, R. C., Lanthier, A., Johnston, H. H., and Hardy, J., 1980, Cushing’s disease: Management by trans-sphenoidal pituitary microsurgery, J. Clin. Endocrinol. Metab. 50: 348–354.PubMedGoogle Scholar
  115. 115.
    Kuwayama, A., Kageyama, N., Nakane, T., Watanabe, M., and Kanie, N., 1980, Anterior pituitary function after transsphenoidal selective microadenomectomy in Cushing’s disease, Proc. VII Int. Cong. Endocrinol., Melbourne, No. 385.Google Scholar
  116. 116.
    Fitzgerald, P. A., Tyrrell, J. B., Brooks, R. M., Forsham, P. H., and Wilson, C. B., 1978, Cushing’s disease: Secondary adrenal insufficiency after selective removal of pituitary adenomas, 60th Annual Meeting of the Endocrine Society, p. 250.Google Scholar
  117. 117.
    Boyar, R. M., Witkin, M., Carruth, A., and Ramsey, J., 1979, Circadian cortisol secretory rhythms in Cushing’s disease, J. Clin. Endocrinol. Metab. 48: 760–765.PubMedGoogle Scholar
  118. 118.
    Lagerquist, L. G., Meikle, A. W., West, D. C., and Tyler, F. H., 1974, Cushing’s disease with cure by resection of a pituitary adenoma: Evidence against a primary hypothalamic defect, Am. J. Med. 57: 826–830.PubMedGoogle Scholar
  119. 119.
    Schnall, A. M., Brodkey, J. S., Kaufman, B., and Pearson, O. H., 1978, Pituitary function after removal of pituitary microadenomas in Cushing’s disease, J. Clin. Endocrinol. Metab. 47: 410–417.PubMedGoogle Scholar
  120. 120.
    Carmalt, M. H. B., Dalton, G. A., Fletcher, R. F., and Smith, W. T., 1977, The treatment of Cushing’s disease by trans-sphenoidal hypophysectomy, Q. J. Med. 46: 119–134.PubMedGoogle Scholar
  121. 121.
    Pont, A., and Gutierrez-Hartman, A., 1979, Cushing’s disease: Recurrence after a surgically induced remission, Arch. Intern. Med. 139: 938–940.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Dorothy T. Krieger
    • 1
  1. 1.Division of EndocrinologyMount Sinai Medical CenterNew YorkUSA

Personalised recommendations