Hormone Receptors and Response in Cultured Renal Epithelial Cell Lines

  • Kathryn E. Meier
  • Paul A. Insel


Although hormones, neurotransmitters, and growth factors can activate renal transport and metabolic functions, a detailed understanding of the role of these agents in the regulation of renal homeostasis has been difficult to ascertain. In large part, this is due to the complexity of the kidney. With its large variety of different cell types, the kidney presents a veritable myriad of potential target cells. One solution to this problem has been to attempt to isolate and study glomeruli, tubular segments, vascular tissue, or other anatomically distinct portions of the kidney. However, studies using these structures have largely ignored the heterogeneity of cell types within anatomically distinct regions. Thus, major questions remain unanswered regarding the sites and mechanisms of hormone responses within the kidney. These questions are readily amenable to examina tion by using cultured renal epithelial cells in which one can study hormone action in homogeneous cell populations (Handler et al., 1980). Although such cells lack the anatomical relationships and cell—cell interplay that exist in vivo, the advantages of being able to isolate variables, to control the cells’ ionic and hormonal milieu, and to draw “clean” conclusions regarding properties of a particular cell type have been powerful “drawing cards” for investigators interested in how hormones and neurotransmitters regulate the kidney.


Vasopressin Receptor Basolateral Surface Increase cAMP Level Glucagon Receptor Dome Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amsler, K., and Cook, J. S., 1982, Development of Na+-dependent hexose transport in a cultured line of porcine kidney cells, Am. J. Physiol. 242:C94–C101.PubMedGoogle Scholar
  2. Ausiello, D. A., and Hall, D., 1981, Regulation of vasopressin-sensitive adenylate cyclase by calmodulin, J. Biol. Chem. 256:9796–9798.PubMedGoogle Scholar
  3. Ausiello, D. A., Hall, D. H., and Dayer, J.-M., 1980, Modulation of cAMP-dependent protein kinase by Vasopressin and calcitonin in cultured porcine renal LLC—PK1 cells, BiocheM. J. 186:773–780.PubMedGoogle Scholar
  4. Baker, M. E., and Fanestil, D. D. 1977, Effect of protease inhibitors and substrates on deoxycor-ticosterone binding to its receptor in dog MDCK kidney cells, Nature 269:810–812.PubMedCrossRefGoogle Scholar
  5. Beaudry, G. A., King, L., Daniel, L. W., and Waite, M., 1982, Stimulation of deacylation in Madin—Darby canine kidney cells: Specificity of deacylation and Prostaglandin production in 12-0-tetradecanoyl-phorbol-13-acetate-treated cells, J. Biol. Chem. 257:10973–10977.PubMedGoogle Scholar
  6. Boerner, P., and Saier, M. H., 1982, Nutrient transport and growth regulation in kidney epithelial cells (MDCK) cultured in a defined medium, in: Growth of Cells in Hormonally Defined Media, Book A, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Laboratory, pp. 555-565.Google Scholar
  7. Brown, C. D. A., and Simmons, N. L., 1981, Catecholamine-stimulation of Cl secretion in MDCK cell epithelium, Biochim. Biophys. Acta 649:427–435.PubMedCrossRefGoogle Scholar
  8. Brown, C. D. A., and Simmons, N. L., 1982, K+ Transport in “tight” epithelial monolayers of MDCK cells: Evidence for a calcium-activated K+ channel, Biochim. Biophys. Acta 690:95–105.PubMedCrossRefGoogle Scholar
  9. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  10. Cereijido, M., Ehrenfeld, J., Meza, I., and Martinez-Palomo, A., 1980, Structural and functional membrane polarity in cultured monolayers of MDCK cells, J. Membr. Biol. 52:147–159.PubMedCrossRefGoogle Scholar
  11. Chin, S., Hall, H. G., and Bissell, M. J., 1982, Substratum affects production and distribution of glycosaminoglycans from epithelial cell lines, J. Cell Biol. 95:124a.Google Scholar
  12. Chuman, L., Fine, L. G., Cohen, A. H., and Saier, M. H., 1982, Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium, J. Cell Biol. 94:506–510.PubMedCrossRefGoogle Scholar
  13. Cobb, M. H., Yang, C.-P. H., Jefferson, D. M., Pasnikowski, E., and Scott, W. N., 1982, Mineralocorticoid-induced membrane proteins in MDCK cells, Mol. Cell Endocrinol. 27:129–137.PubMedCrossRefGoogle Scholar
  14. Colston, K., and Feldman, D., 1982, 1,25-Dihydroxyvitamin D3 receptors and functions in cultured pig kidney cells (LLC—PK1): Regulation of 24,25-dihydroxyvitamin D3 production, J. Biol. Chem. 257:2504–2508.PubMedGoogle Scholar
  15. Darfler, F. D., Hughes, R. J., and Insel, P. A., 1981, Characterization of serum-induced alterations in the cyclic AMP pathway in S49 lymphoma cells, J. Biol. Chem. 256:8422–8428.PubMedGoogle Scholar
  16. Dibner, M. D., and Insel, P. A., 1981, Serum catecholamines desensitive β-adrenergic receptors of cultured C6 glioma cells, J. Biol. Chem. 256:7343–7346.PubMedGoogle Scholar
  17. Dragsten, P. R., Blumenthal, R., and Handler, J. S., 1981, Membrane asymmetry in epithelia: Is the tight junction a barrier to diffusion in the plasma membrane? Nature 294:717–722.CrossRefGoogle Scholar
  18. Fidelman, M. L., May, J. M., Biber, T. U. L., and Watlington, C. O., 1982, Insulin stimulation of Na+ transport and glucose metabolism in cultured kidney cells, Am. J. Physiol. 242:C121–C123.PubMedGoogle Scholar
  19. Gausch, C. R., Hard, W. L., and Smith, T. F., 1966, Characterization of an established line of canine kidney cells (MDCK), Proc. Soc. Exp. Biol. Med. 122:931–935.Google Scholar
  20. Goldring, S. R., Dayer, J.-M., Ausiello, D. A., and Krane, S. M., 1978, A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or Vasopressin, Biochem. Biophys. Res. Commun. 83:434–440.PubMedCrossRefGoogle Scholar
  21. Hall, H. G., Larson, D., and Bissell, M. J., 1982, Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture, Proc. Natl. Acad. Sci. USA 79:4672–4676.PubMedCrossRefGoogle Scholar
  22. Handler, J. S., Perkins, F. M., and Johnson, J. P., 1980, Studies of renal cell function using cell culture techniques, Am. J. Physiol. 238:F1–F9.PubMedGoogle Scholar
  23. Handler, J. S., Preston, A. S., Perkins, F. M., and Matsumura, M., 1981, The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells, Ann. N.Y. Acad. Sci. 372:442–454.PubMedCrossRefGoogle Scholar
  24. Handler, J. S., Preston, A. S., and Steele, R. E., 1984, Factors affecting the differentiation of epithelial transport and responsiveness to hormones, Fed. Proc. 43:2221–2224.PubMedGoogle Scholar
  25. Hassid, A., 1981, Transport-active renal tubular epithelial cells (MDCK and LLC—PK1) in culture: Prostaglandin biosynthesis and its regulation by peptide hormones and ionophore, Prostaglandins 21:985–1001.PubMedCrossRefGoogle Scholar
  26. Heinlein, R. A., 1980, The Number of the Beast, Ballantine, New York, p. 508.Google Scholar
  27. Herzlinger, D. A., Easton, T. G., and Ojakian, G. K., 1982, The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93:269–277.PubMedCrossRefGoogle Scholar
  28. Hull, R. N., Cherry, W. R., and Weaver, W., 1976, The origin and characteristics of a pig kidney cell strain, LLC—PK, In Vitro 12:670–677.PubMedCrossRefGoogle Scholar
  29. Ishizuka, I., Tadcno, K., Nagata, N., Niimura, Y., and Nagai, Y., 1978, Hormone-specific responses and biosynthesis of sulfolipids in cell lines derived from mammalian kidney, Biochim. Biophys. Acta 541:467–482.PubMedCrossRefGoogle Scholar
  30. Johnson, J. P., Steele, R. E., Perkins, F. M., Wade, J. B., Preston, A. S., Green, S. W., and Handler, J. S., 1981, Epithelial organization and hormone sensitivity of toad urinary bladder cells in culture, Am. J. Physiol. 241:F129–F138.PubMedGoogle Scholar
  31. Katsuta, H., and Takaoka, T., 1973, Cultivation of cells in protein-and lipid-free synthetic media, in: Methods in Cell Biology (D. M. Prescott, ed.), Academic Press, New York, pp. 1–42.Google Scholar
  32. Lang, M. A., Forrest, J. N., Preston, A. S., and Handler, J. S., 1982, Adenosine stimulates cAMP accumulation and sodium transport in epithelia formed by A6 (toad kidney) cells in culture, Proc. Amer. Soc. Nephrol., p. 168A.Google Scholar
  33. Leighton, J., Brada, Z., Estes, L. W., and Justh, G., 1969, Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney, Science 163:472–473.PubMedCrossRefGoogle Scholar
  34. Leighton, J., Estes, L. W., Mansukhani, S., and Brada, Z., 1970, A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and of renal tublar epithelium, Cancer 26:1022–1028.PubMedCrossRefGoogle Scholar
  35. Lever, J. E., 1981, Regulation of dome formation in kidney epithelial cell cultures, Ann. N.Y. Acad. Sci. 372:371–383.PubMedCrossRefGoogle Scholar
  36. Lever, J. E., 1982, Cell differentiation and dome formation in polarized epithelial cell monolayers, in: Growth of Cells in Hormonally Defined Media, Book A, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Laboratory, pp. 541-554.Google Scholar
  37. Levine, L., and Hassid, A., 1977, Epidermal growth factor stimulates Prostaglandin synthesis by canine kidney (MDCK) cells, Biochem. Biophys. Res. Commun. 76:1181–1187.PubMedCrossRefGoogle Scholar
  38. Levine, L., and Moskowitz, M. A., 1979, α-and β-Adrenergic stimulation of arachidonic acid metabolism in cells in culture, Proc. Natl. Acad. Sci. USA 76: 6632–6636.PubMedCrossRefGoogle Scholar
  39. Lewis, M. G., and Spector, A. A., 1981, Differences in types of Prostaglandins produced by two MDCK canine kidney cell sublines, Prostaglandins 21:1025–1032.PubMedCrossRefGoogle Scholar
  40. Lewis, M. G., Kaduce, T. L., and Spector, A. A., 1981, Effect of essential polyunsaturated fatty acid modifications on Prostaglandin production by MDCK canine kidney cells, Prostaglandins 22:747–760.PubMedCrossRefGoogle Scholar
  41. Lifschitz, M. D., 1982, LLC—PK1 cells derived from pig kidneys have a defect in cyclooxygenase, J. Biol. Chem. 257:12611–12615.PubMedGoogle Scholar
  42. Lin, M. C., Koh, S.-W. M., Dykman, D. D., Beckner, S. K., and Shih, T. Y., 1982, Loss and restoration of glucagon receptors and responsiveness in a transformed kidney cell line, Exp. Cell Res. 142:181–189.PubMedCrossRefGoogle Scholar
  43. Ludens, J. H., Vaughn, D. A., Mawe, R. C., and Fanestil, D. D., 1978, Specific binding of deoxycorticosterone by canine kidney cells in culture, J. Steroid Biochem. 9:17–21.PubMedCrossRefGoogle Scholar
  44. Madin, S. H., and Darby, N. B., 1958, Established kidney cell lines of normal adult bovine and ovine origin, Proc. Soc. Exp. Biol. Med. 98:574–576.PubMedGoogle Scholar
  45. Maleque, A., Endou, H., Koseki, C., and Sakai, F., 1980, Nephron heterogeneity: Gluconeogenesis from pyruvate in rabbit nephron, FEBS Lett. 116:154–156.PubMedCrossRefGoogle Scholar
  46. McPherson, G. A., and Summers, R. J., 1982, A study of α1 -adrenoceptors in rat renal cortex: Comparison of [3H]prazosin binding with the α1-adrenoceptor modulating gluconeogenesis under physiological conditions, Br. J. Pharmacol. 77:177–184.PubMedGoogle Scholar
  47. McRoberts, J. A., Taub, M., and Saier, M. H., 1981, The Madin—Darby canine kidney (MDCK) cell line, in: Functionally Differentiated Cell Lines (G. Sato, ed.), Liss, New York, pp. 117–139.Google Scholar
  48. Meier, K. E., and Insel, P. A., 1982, Clonal variation in the expression of catecholamine receptors in MDCK cells, J. Cell Biol. 95:416a.Google Scholar
  49. Meier, K. E., Snavely, M. D., and Insel, P. A., 1982, α-and β-adrenergic receptors in the MDCK renal epithelial cell line, J. Cell Biochem. Suppl. 6, p. 126.Google Scholar
  50. Meier, K. E., Snavely, M. D., Brown, S. L., Brown, J. H., and Insel, P. A., 1983a, Alpha1-and beta2-adrenergic receptor expression in the Madin—Darby canine kidney epithelial cell line, J. Cell Biol. 97:405–415.PubMedCrossRefGoogle Scholar
  51. Meier, K. E., Sternfeld, D. R., and Insel, P. A., 1983b, How different are alpha-and beta-adrenergic receptors? Fed. Proc. 42:1875.Google Scholar
  52. Meier, K. E., Sternfeld, D. R., and Insel, P. A., 1984, Alpha1-and beta2-adrenergic receptors coexpressed on cloned MDCK cells are distinct glycoproteins, Biochem. Biophys. Res. Comm. 118:73–81.PubMedCrossRefGoogle Scholar
  53. Mills, J. W., Macknight, A. D. C., Dayer, J.-M., and Ausiello, D. A., 1979, Localization of [3H]ouabain-sensitive Na+ pump sites in cultured pig kidney cells, Am. J. Physiol. 2326: C157–C162.Google Scholar
  54. Misfeldt, D. S., and Sanders, M. J., 1981, Transepithelial transport in cell culture: d-Glucose transport by a pig kidney cell line (LLC—PK1), J. Membr. Biol. 59:13–18.PubMedCrossRefGoogle Scholar
  55. Misfeldt, D. S., Mamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.PubMedCrossRefGoogle Scholar
  56. Moran, A., Handler, J. S., and Turner, R. J., 1982, Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line, Am. J. Physiol. 243:C293–C298.PubMedGoogle Scholar
  57. Morel, F., 1981, Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240:F159–F164.PubMedGoogle Scholar
  58. Moss, N. G., 1982, Renal function and renal afferent and efferent nerve activity, Am. J. Physiol. 243:F425–F433.PubMedGoogle Scholar
  59. Mullin, J. M., Weibel, J., Diamond, L., and Kleinzeller, A., 1980, Sugar transport in the LLC—PK1 renal epithelial cell line: Similarity to mammalian kidney and the influence of cell density, J. Clin. Pathol. 104:375–389.Google Scholar
  60. Mullin, J. M., Cha, C.-J. M., and Kleinzeller, A., 1982, Metabolism of l-lactate by LLC—PK1 renal epithelia, Am. J. Physiol. 242:C41–C45.PubMedGoogle Scholar
  61. Munson, P. J., and Rodbard, D., 1980, LIGAND: A versatile computerized approach to characterization of ligand binding systems, Anal. Biochem. 107:220–239.PubMedCrossRefGoogle Scholar
  62. Ohuchi, K., and Levine, L., 1978, Stimulation of Prostaglandin synthesis by tumor-promoting phorbol-12,13-diesters in canine kidney (MDCK) cells: Cycloheximide inhibits the stimulated Prostaglandin synthesis, deacylation of lipids, and morpholocial changes, J. Biol. Chem. 253:4783–4790.PubMedGoogle Scholar
  63. Perantoni, A., and Berman, J. J., 1979, Properties of Wilm’s tumor line (TuWi) and pig kidney line (LLC—PK1) typical of normal kidney tubular epithelium, In Vitro 15:446–454.PubMedCrossRefGoogle Scholar
  64. Perkins, F. M., and Handler, J. S., 1981, Transport properties of toad kidney epithelia in culture, Am. J. Physiol. 241:C154–C159.PubMedGoogle Scholar
  65. Phillips, S. G., Lui, S.-L., and Phillips, D. M., 1982, Binding of epithelial cells to lectin-coated surfaces, In Vitro 18:727–738.PubMedCrossRefGoogle Scholar
  66. Rabito, C. A., and Karish, M. V., 1982, Polarized amino acid transport by an epithelial cell line of renal origin (LLC—PK1): The basolateral systems, J. Biol. Chem. 257:6802–6808.PubMedGoogle Scholar
  67. Rabito, C. A., and Karish, M. V., 1983, Polarized amine acid transport by an epithelial cell line of renal origin (LLC—PK1): The apical systems, J. Biol. Chem. 258:2543–2547.PubMedGoogle Scholar
  68. Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1980, Effect of cell—substratum interaction on hemmicyst formation by MDCK cells, In Vitro 16:461–468.PubMedCrossRefGoogle Scholar
  69. Rafferty, K. A., 1969, Mass culture of amphibian cells: Methods and observations concerning stability of cell type, in: Biology of Amphibian Tumors (M. Mizell, ed.), Springer, New York, pp. 52–81.Google Scholar
  70. Richardson, J. C. W., Scalera, V., and Simmons, N. L., 1981, Identification of two strains of MDCK cells which resemble separate nephron tubule segments, Biochim. Biophys. Acta 673:26–36.PubMedCrossRefGoogle Scholar
  71. Rindler, M. J., Chuman, L. M., Shaffer, L., and Saier, M. H., 1979, Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK), J. Cell Biol. 81:635–648.PubMedCrossRefGoogle Scholar
  72. Roy, C., and Ausiello, D. A., 1981, Characterization of (8-lysine) Vasopressin binding sites on a pig kidney cell line (LLC—PK1): Evidence for hormone-induced receptor transition, J. Biol. Chem. 256:3415–3422.PubMedGoogle Scholar
  73. Roy, C., Preston, A. S., and Handler, J. S., 1980, Insulin and serum increase the number of receptors for Vasopressin in a kidney-derived line of cells grown in a defined medium, Proc. Natl. Acad. Sci. USA 77:5979–5983.PubMedCrossRefGoogle Scholar
  74. Roy, C., Hall, D., Karish, M., and Ausiello, D. A., 1981, Relationship of (8-lysine)vasopressin receptor transition to receptor functional properties in a pig kidney cell line (LLC—PK1), J. Biol. Chem. 256:3423–3427.PubMedGoogle Scholar
  75. Rugg, E. L., and Simmons, N. L., 1981, Catecholamine stimulation of adenylate cyclase in Madin-Darby canine kidney (MDCK) cells, J. Physiol. London 322:26P–27P.Google Scholar
  76. Saier, M. H., 1981, Growth and differentiated properties of a kidney epithelial cell line (MDCK), Am. J. Physiol. 240:C106–C109.PubMedGoogle Scholar
  77. Scatchard, G., 1949, The attraction of protein for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660–572.CrossRefGoogle Scholar
  78. Schmidt, U., and Guder, W. G., 1976, Sites of enzyme activity along the nephron, Kidney Int. 9:233–242.PubMedCrossRefGoogle Scholar
  79. Schmitz, J. M., Graham, R. M., Sagalowsky, R., and Pettinger, W. J., 1981, Renal alpha-1 and alpha-2 adrenergic receptors: Biochemical and pharmacological correlations, J. Pharmacol. Exp. Ther. 219:400–406.PubMedGoogle Scholar
  80. Simmons, N. L., 1978, Hormone stimulation of net transepithelial Na transport in cell culture, J. Physiol. 276:28P–29P.PubMedGoogle Scholar
  81. Simmons, N. L., 1981, Ion transport in “tight” epithelial monolayers of MDCK cells, J. Membr. Biol. 59:105–114.PubMedCrossRefGoogle Scholar
  82. Simmons, N. L., 1982, Cultured monolayers of MDCK cells: A novel system for the study of epithelial development and function, Gen. Pharmacol. 13:287–291.PubMedCrossRefGoogle Scholar
  83. Snavely, M. D., and Insel, P. A., 1982, Characterization of alpha-adrenergic receptor subtypes in the rat renal cortex. Differential regulation of alpha1-and alpha2-adrenergic receptors by guanyl nucleotides and Na+, Mol. Pharmacol. 22:532–546.PubMedGoogle Scholar
  84. Snavely, M. D., Motulsky, H. J., Moustafa, E., Mahan, L. C., and Insel, P. A., 1982, Beta-adrenergic receptor subtypes in the rat renal cortex: Selective regulation of beta1-adrenergic receptors by pheochromocytoma, Circ. Res. 51:504–513.PubMedGoogle Scholar
  85. Stadel, J. M., DeLean, A., and Lefkowitz, R. J., 1982, Molecular mechanisms of coupling in hormone-receptor-adenylate cyclase systems, Adv. Enzymol. 53:1–43.PubMedGoogle Scholar
  86. Taub, M., 1982, Hormones control the growth and function of cultured kidney cells, in: Growth of Cells in Hormonally Defined Media, Book A, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Laboratory, pp. 581-592.Google Scholar
  87. Taub, M., and Saier, M. H., 1979, An established but differentiated kidney epithelial cell line (MDCK), Methods Enzymol. 38:552–561.CrossRefGoogle Scholar
  88. Taub, M., Chuman, L., Saier, M. H., and Sato, G., 1979, Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium, Proc. Natl. Acad. Sci. USA 76:3338–33422PubMedCrossRefGoogle Scholar
  89. Taub, M., Ü, B., Chuman, L., Rindler, M. J., Saier, M. H., and Sato, G., 1981, Alterations in growth requirements of kidney epithelial cells in defined medium associated with malignant transformation, J. Supramol. Struct. Cell. Biochem. 15:63–72.PubMedCrossRefGoogle Scholar
  90. Thomas, S. R., Schultz, S. G., and Lever, J. E., 1982, Stimulation of dome formation in MDCK kidney epithelial cultures by inducers of differentiation: Dissociation from effects on transepithelial resistance and cyclic AMP levels, J. Cell Physiol. 113:427–432.PubMedCrossRefGoogle Scholar
  91. Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–405.PubMedCrossRefGoogle Scholar
  92. Valentich, J. D., 1982, Basal-lamina assembly by the dog kidney epithelial cell line MDCK, in: Growth of Cells in Hormonally Defined Media, Book A, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Laboratory, pp. 567-579.Google Scholar
  93. Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK, J. Cell. Physiol. 100:291–304.PubMedCrossRefGoogle Scholar
  94. Vassent, G., Roy, C., and Ausiello, D. A., 1981, Appendix: Methodology, J. Biol. Chem. 256:3422.Google Scholar
  95. Watlington, C. O., Perkins, F. M., Munson, P. J., and Handler, J. S., 1982, Aldosterone and corticosterone binding and effects on Na+ transport in cultured kidney cells, Am. J. Physiol. 242:F610–F619.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kathryn E. Meier
    • 1
  • Paul A. Insel
    • 1
  1. 1.Department of Medicine, Division of Pharmacology, M-013 HUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations