Transepithelial Transport in Cell Culture

Mechanism and Bioenergetics of Na+, d-Glucose Cotransport
  • Dayton S. Misfeldt
  • Martin J. Sanders


This chapter is a general review of our laboratory’s effort to utilize epithelial cell culture to explore questions of epithelial transport that are less amenable to other experimental approaches. It is remarkable that cultured transporting epithelial cells express their phenotype when dissociated from the mesenchymal scaffolding of the tissue of origin (Misfeldt et al., 1976). Our experimental insight was to culture the epithelial cells on a permeable support, such as a membrane filter, that would allow the cell layer to be experimentally manipulated (Misfeldt et al., 1975). The cultured cells could then be mounted in an Ussing chamber, which provided access to, and isolation of, the fluid bathing either side of the epithelial sheet. Thus, by this experimental technique there is formed in culture a functioning epithelial tissue from dissociated individual cells. Experimental questions could thus be directed at cellular and subcellular processes that require tissue level function for solution.


Apical Membrane Brush Border Membrane Vesicle Ussing Chamber Hill Plot Transepithelial Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aronson, P. S., 1978, Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient and sugar transport, J. Membrane Biol. 42:81–98.CrossRefGoogle Scholar
  2. Aronson, P. S., and Sacktor, B., 1975, The Na+ gradient-dependent transport of d-glucose in renal brush border membranes, J. Biol. Chem. 250:6032–6039.PubMedGoogle Scholar
  3. Barry, R. J. C., Smyth, D. H., and Wright, E. M., 1965, Short-circuit and solute transfer by rat jejunum, J. Physiol. 181:410–431.PubMedGoogle Scholar
  4. Beck, J. C., and Sacktor, B., 1978, The sodium electrochemical potential mediated uphill transport of d-glucose in renal brush border membrane vesicles, J. Biol. Chem. 253:5531–5535.PubMedGoogle Scholar
  5. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  6. Chesney, R., Sacktor, B., and Kleinzeller, A., 1974, The binding of phlorizin to the isolated luminal membranes of the renal proximal tubule, Biochem. Biophys. Acta 332:263–277.CrossRefGoogle Scholar
  7. Crane, R. K., 1960, Intestinal absorption of sugars, Physiol. Rev. 40:789–825.PubMedGoogle Scholar
  8. Crane, R. K., and Dorando, F. C., 1979, On the mechanism of Na+-dependent glucose transport, in: Function and Molecular Aspects of Biomembrane Transport (E. Quagaliariello, E., Palmieri, F., Papa, S., and Klingenberg, M., eds.), Elsevier North Holland Biomedical Press, New York, pp. 271–278.Google Scholar
  9. Curran, P. F., and Cereijido, M., 1965, K fluxes in frog skin, J. Gen. Physiol. 48:1101–1033.CrossRefGoogle Scholar
  10. DeLong, J., and Civan, M. M., 1978, Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder, J. Membrane Biol. 42:19–43.CrossRefGoogle Scholar
  11. Ehmann, U. K., Peterson, W. D., Jr., Misfeldt, D. S., 1948, To grow mouse mammary cells in culture, J. Cell Biol. 98:1026–1032.CrossRefGoogle Scholar
  12. Fairclough, P., Malathi, H., Preiser, H., and Crane, R. K., 1979, Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule. Characteristics of the system, Biochem. Biophys. Acta 552:295–306.Google Scholar
  13. Fisher, F. M., Jr., and Read, C. P., 1971, Transport of sugar in the tape worm Calliobothrium verticillatum. Biol. Bull. (Woods Hole, Massachusetts) 140:46–62.CrossRefGoogle Scholar
  14. Frasch, W., Frohnert, P. P., Bode, F., Baumann, K., and Kinne, R., 1970, Competitive inhibition of phlorizin binding by d-glucose and influence of sodium: A study on brush border membrane of rat kidney, Pfluegers Arch. 320:265–284.CrossRefGoogle Scholar
  15. Frömter, E., 1979, Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules? J. Physiol. 288:1–38.PubMedGoogle Scholar
  16. Frömter, E., and Luer, K., 1973, Electrical studies on sugar transport kinetics of rat proximal tubule, Pfluegers Arch. 343:R47.Google Scholar
  17. Glossman, H., and Neville, D. M., Jr., 1972, Phlorizin receptors in isolated kidney brushborder membrane, J. Biol Chem. 247:7779–7789.Google Scholar
  18. Goodman, B. E., Sleischer, R. E., and Crandall, E. D., 1983, Evidence for active sodium transport by monolayers of pulmonary alveolar epithelial cells, Am. J. Physiol. 245:C78–C83.PubMedGoogle Scholar
  19. Handler, J. S., Preston, A. G., and Orloff, J., 1969, The effect of aldosterone on glycolysis in the urinary bladder of the toad, J. Biol. Chem. 244:3194–3199.PubMedGoogle Scholar
  20. Hopfer, U., and Groseclose, R., 1980, The mechanism of Na+-dependent d-glucose transport, J. Biol. Chem. 225:4453–4462.Google Scholar
  21. Kanuitz, J. D., Gunther, R., and Wright, E. M., 1982, Involvement of multiple Na+ ions in intestinal d-glucose transport, Proc. Natl. Acad. Sci. USA 79:2315–2318.CrossRefGoogle Scholar
  22. Kimmich, G. A., and Randles, J., 1980, Evidence for an intestinal Na+: sugar transport coupling stoichiometry of 2.0, Biochem. Biophys. Acta 596:439–444.PubMedCrossRefGoogle Scholar
  23. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., and Sachs, G., 1975, Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush border microvilli and basal-lateral plasma membranes, J. Membrane Biol. 21:375–395.CrossRefGoogle Scholar
  24. Kirk, K., Halm, D., and Dawson, D. C., 1980, Active sodium transport by turtle colon via electrogenic Na-K exchange pump, Nature 287:237–239.PubMedCrossRefGoogle Scholar
  25. Klahr, S., and Bricker, N. S., 1964, Na transport by isolated turtle bladder during anaerobiosis and exposure to KCN, Am. J. Physiol. 206:1333–1339.PubMedGoogle Scholar
  26. Koefoed-Johnsen, V., and Ussing, H. H., 1958, The nature of frog skin potential, Acta Physiol. Scand. 42:298–308.PubMedCrossRefGoogle Scholar
  27. Mason, R. J., Williams, M. C., Widdicombe, J. H., Sanders, M. J., Misfeldt, D. S., and Berry, L., 1982, Transepithelial transport by pulmonary alveolar type II cells in primary cultures, Proc. Natl Acad. Sci. USA 79:6033–6037.PubMedCrossRefGoogle Scholar
  28. Misfeldt, D. S., and Sangers, M. J., 1981, Transepithelial transport in cell culture: d-glucose transport by a pig kidney cell line (LLC—PK1), J. Membrane Biol. 59:13–18.CrossRefGoogle Scholar
  29. Misfeldt, D. S., and Sanders, M. J., 1982, Transepithelial transport in cell culture: Stiochiometry of Na/phlorizin binding and Na/d-glucose cotransport. A two-step, two sodium model of binding and translocation, J. Membrane Biol. 70:191–198.CrossRefGoogle Scholar
  30. Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.PubMedCrossRefGoogle Scholar
  31. Mosteller, F., and Tukey, J. W., 1977, Data Analysis and Regression, Addison Wesley, Menlo Park, California, pp. 133–164.Google Scholar
  32. Mullin, J. M., Weibel, J., Diamond, L., and Kleinzellar, A., 1980, Sugar transport in the LLC—PK1 renal epithelial cell line similarity to to mammalian kidney and the influence of cell density, J. Cell Physiol. 104:375–379.PubMedCrossRefGoogle Scholar
  33. Murer, H., and Hopfer, U., 1974, Demonstration of electrogenic Na+-dependent d-glucose transport in intestinal brush border membranes, Proc. Natl. Acad. Sci. USA 71:484–488.PubMedCrossRefGoogle Scholar
  34. Nellans, H., and Schultz, S. G., 1976, Relations among transepithelial sodium transport, potassium exchange and cell volume in rabbit ileum, J. Gen. Physiol. 68:441–463.PubMedCrossRefGoogle Scholar
  35. Neilsen, R., 1979, Coupled transepithelial sodium and potassium transport across isolated frog skin: Effects of ouabain, amiloride and the polyene antibiotic filipin, J. Membrane Biol. 51:161–184.CrossRefGoogle Scholar
  36. Rabito, C. A., and Ausiello, D. A., 1980, Na+-dependent sugar transport in a cultured epithelial cell line (LLC—PK1), J. Membrane Biol. 54:31–38.CrossRefGoogle Scholar
  37. Read, C. P., Stewart, G. L., and Pappas, P. W., 1974, Glucose and sodium fluxes across the brush border of Hymenolepis dimunata (cestoda), Biol. Bull. (Woods Hole, Massachusetts) 147:146–162.CrossRefGoogle Scholar
  38. Reitzer, L. J., Wice, B. M., and Kennell, D., 1979, Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells, J. Biol. Chem. 254:2669–2676.PubMedGoogle Scholar
  39. Robinson, B. A., and MacKnight, A. D. C., 1976, Relationship between serosal medium potassium concentration and sodium transport in toad urinary bladder: III Exchangeability of epithelial cellular potassium, J. Membrane Biol. 26:269–286.CrossRefGoogle Scholar
  40. Ryan, J., and Simoni, R. D., 1980, Alanine transport by Chinese hamster ovary cells with altered phospholipid acyl chain composition, Biochim. Biophys. Acta 598:606–615.PubMedCrossRefGoogle Scholar
  41. Sanders, M. J., and Misfeldt, D. S., 1982, Ouabain-sensitive 86Rb(K) influx is linked to transepithelial Na transport in pig kidney cell line, Biochim. Biophys. Acta 685:383–385.PubMedCrossRefGoogle Scholar
  42. Sanders, M. J., Simon, L. M., and Misfeldt, D. S., 1983, Transepithelial transport in cell culture: Bioenergetics of Na-, d-glucose-coupled transport, J. Cell. Physiol. 114:263–266.PubMedCrossRefGoogle Scholar
  43. Schwartz, J. H., and Steinmetz, P. R., 1977, Metabolic energy and pCO2 as determinants of H+ secretion by turtle urinary bladder, Am. J. Physiol. 233:F145–F149.PubMedGoogle Scholar
  44. Steinmetz, P. R., Husted, R. F., Mueller, A., and Beauwens, R., 1981, Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder. Effect of inhibitors of H+ ATPase, J. Membr. Biol. 59:27–34.PubMedCrossRefGoogle Scholar
  45. Toggenburger, G., Kessler, M., Rothstein, A., and Semenza, G., 1978, Similarity in effects of Na+ gradients and membranes potentials on d-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rabbit intestinal mucosal cells, J. Membrane Biol. 40:269–290.CrossRefGoogle Scholar
  46. Turner, R. J., and Silverman, M., 1978, Sugar uptake into brush border vesicles from dog kidney. I. Specificity, Biochim. Biophys. Acta 507:305–321.PubMedCrossRefGoogle Scholar
  47. Turner, R. J., and Silverman, M., 1981, Interaction of phlorizin and sodium with the renal brush-border membrane d-glucose transporter: Stoichiometry and order of binding, J. Membrane Biol. 58:43–55.CrossRefGoogle Scholar
  48. Ullrich, K. H., Rumrich, G., and Kloss, S., 1974, Specificity and sodium dependence of the active sugar transport in the proximal convolution of the rat kidney, Pfluegers Arch. 351:35–48.CrossRefGoogle Scholar
  49. Zuethen, T., and Wright, E. M., 1978, An electrogenic Na+ /K+ pump in the choroid plexus, Biochim. Biophys. Acta 511:517–522.CrossRefGoogle Scholar
  50. Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Cornblath, M., 1976, Growth of human diploid fibroblasts in the absence of glucose utilization, Proc. Natl. Acad. Sci. USA 73:4110–4114.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Dayton S. Misfeldt
    • 1
  • Martin J. Sanders
    • 2
  1. 1.Palo Alto Veterans Medical CenterPalo AltoUSA
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations