Ion Transport in MDCK Cells

  • S. Fernández-Castelo
  • J. J. Bolívar
  • R. López-Vancell
  • G. Beaty
  • M. Cereijido


The use of monolayers of MDCK cells as a model system for natural transporting epithelia created the necessity of learning about their ion-translocating mechanisms. These mechanisms have been analyzed directly by measuring unidirectional fluxes of tracers, and indirectly through their consequences on electrical parameters and blister-forming activity of the monolayer. This chapter reviews briefly the information available on the mechanisms and also describes the studies performed to determine whether they respond to agents like serum, ADH, changes in sodium concentration, and viral infection, which are known to affect transport parameters in other biological preparations.


MDCK Cell Basolateral Side Epithelial Cell Culture Mono Layer Blister Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abaza, N. A., Leighton, J., and Schultz, S. G., 1974, Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney, In Vitro 10:172–183.CrossRefGoogle Scholar
  2. Carrasco, L., 1978, Membrane leakiness after viral infection and a new approach to the development of antiviral agents, Nature 272:694–699.PubMedCrossRefGoogle Scholar
  3. Cereijido, ML, Herrera, F. C., Flanigan, W. J., and Curran, P. F., 1964, The influence of Na concentration on Na transport across frog skin, J. Gen. Physiol. 47:879–893.PubMedCrossRefGoogle Scholar
  4. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978a, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  5. Cereijido, M., Rotunno, C. A., Robbins, E. S., and Sabatini, D. D., 1978b, Polarized epithelial membranes produced in vitro, in: Membrane Transport Processes, Volume 1 (J. F. Hoffman, ed.), Raven Press, New York, pp. 433–461.Google Scholar
  6. Cereijido, M., Ehrenfeld, J., Meza, I., and Martínez-Palomo, A., 1980, Structural and functional membrane polarity in cultured monolayers of MDCK cells, J. Membr. Biol. 52:147–159.PubMedCrossRefGoogle Scholar
  7. Cereijido, M., Ehrenfeld, J., Fernández-Castelo, S., and Meza, I., 1981, Fluxes, junctions and blisters in cultured monolayers of epithelioid cells (MDCK), Ann. N.Y. Acad. Sci. 372:422–441.PubMedCrossRefGoogle Scholar
  8. Constanzo, L. F., and Windhager, E. E., 1980, Effects of PTH, ADH, and cyclic AMP on distance tubular Ca and Na reabsorption, Am. J. Physiol. 239:F478–F485.Google Scholar
  9. Cunningham, D. D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum addition to “contact-inhibited” 3T3 cells, Proc. Natl. Acad. Sci. 64:1049–1056.PubMedCrossRefGoogle Scholar
  10. Field, H., 1978, Some speculations on the coupling between sodium and chloride transport processes in mammalian teleost intestine, in: Membrane Transport Processes, Volume 1 (J. F. Hoffman, ed.), Raven Press, New York, pp. 277–292.Google Scholar
  11. Frizzel, R. A., Field, M., and Schultz, S. G., 1979, Sodium coupled chloride transport by epithelial tissues, Am. J. Physiol. 236:F1–F8.Google Scholar
  12. Hassid, A., 1981, Transport-active renal tubular epithelial cells (MDCK and LLC—PK1) in culture. Prostaglandin biosynthesis and its regulation by peptidehormones and ionophore, Prostaglandins 21:985–1001.PubMedCrossRefGoogle Scholar
  13. Hatanaka, M., Huebner, R. J., and Gilden, R. V., 1969, Alterations in the characteristics of sugar uptake by mouse cells infected by murine sarcoma viruses, J. Natl. Cancer Inst. 43:1091–1096.PubMedGoogle Scholar
  14. Herzlinger, D. A., Easton, T. G., and Ojakian, G. K., 1982, The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93:269–277.PubMedCrossRefGoogle Scholar
  15. Hodgkin, A., and Keynes, R., 1955, The potassium permeability of a giant nerve fibre, J. Physiol. 128:71–88.Google Scholar
  16. Holt, W. F., and Lechene, C., 1981, ADH-PGE2 interactions in cortical collecting tubule. I. Depression of sodium transport, Am. J. Physiol. 241:F452–F460.PubMedGoogle Scholar
  17. Imprain, C. C., Foster, K. A., Micklem, K. J., and Pasternak, C. A., 1980, Nature of virally mediated changes in membrane permeability to small molecules, Biochem. J. 187:847–860.Google Scholar
  18. Isselbacher, K. J., 1972, Increased uptake of aminoacids and 2-deoxy-D-glucose by virus. Transformed cells in culture, Proc. Natl. Acad. Sci. USA 69:585–589.PubMedCrossRefGoogle Scholar
  19. Kalkar, H. M., Ullrey, D., Kijomoto, S., and Hakomori, S., 1973, Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virus, Proc. Natl. Acad. Sci. USA 70: 839–843.CrossRefGoogle Scholar
  20. Klemperer, H. G., 1960, An effect of phoritzin on influenza virus elution and on neuroaminidase activity, Virology 12:495–498.PubMedCrossRefGoogle Scholar
  21. Lamb, J. F., Odgen, P., and Simmons, N. L., 1981, Autoradiographic localisation of [3H] ouabain bound to cultured epithelial cell monolayers of MDCK cells, Biochim. Biophys. Acta 644:333–340.PubMedCrossRefGoogle Scholar
  22. Leighton, J., Brada, Z., Estes, L. W., and Justh, G., 1969, Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney, Science 163:472–473.PubMedCrossRefGoogle Scholar
  23. Lever, J. E., 1979a, Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK), Proc. Natl. Acad. Sci. USA 76:1323–1327.PubMedCrossRefGoogle Scholar
  24. Lever, J. E., 1979b, Cyclic AMP and inducers of mammalian cell differentiation stimulate dome formation in mammary and renal epithelial cell cultures, in: Hormones and Cell Culture, Cold Spring Harbor Conferences on Cell Proliferation, Volume 6 (G. Sato and R. Ross, eds.), Cold Spring Harbor Press, New York, pp. 727–738.Google Scholar
  25. Lever, J. E., 1979c, Regulation of dome formation in differentiated epithelial cell cultures, J. Supram. Struct. 12:259–272.CrossRefGoogle Scholar
  26. Lever, J. E., 1981, Regulation of dome formation in kidney epithelial cell cultures, Ann. N.Y. Acad. Sci. 372:371–383.PubMedCrossRefGoogle Scholar
  27. Madin, S. H., and Darby, N. B., 1958, CCL-34, as catalogued in: American Type Culture Collection of Strains, 1975, Volume 2 (H. O. Hatt, ed.), Library of Congress, Rockville, Maryland, p. 30.Google Scholar
  28. McRoberts, J. A., Erlinger, S., Rindler, M. J., and Saier, Jr., M. H., 1982, Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line, J. Biol. Chem. 257:2260–2266.PubMedGoogle Scholar
  29. Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.PubMedCrossRefGoogle Scholar
  30. Misfeldt, D. S., Tunner, C., and Franbach, D., 1984, The biophysics of domes formed by the renal cell line MDCK, Fed. Proc. 43:2217–2220.PubMedGoogle Scholar
  31. Negreanu, Y., Reinhertz, Z., and Kohn, A., 1974, Effects of adsorption of u.d.-inactivated parainfluenza (Sendai) virus on the incorporation of aminoacids in animal host cells, J. Gen. Virol. 22:265–270.PubMedCrossRefGoogle Scholar
  32. Okada, Y., Koseki, I., Kim, J., Maeda, Y., Hashimoto, T., Kanno, Y., and Matsui, Y., 1975, Modification of cell membranes with viral envelopes during fusion of cells with HDJ (Sendai virus). I. Interaction between cell membranes and virus in the early stage, Exp. Cell Res. 93:368–378.PubMedCrossRefGoogle Scholar
  33. Pasternak, C. A., and Micklem, K. J., 1973, Permeability changes during cell fusion, J. Membr. Biol. 14:293–303.PubMedCrossRefGoogle Scholar
  34. Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1978, Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney, J. Membr. Biol. 43:351–365.PubMedCrossRefGoogle Scholar
  35. Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1980, Effect of cell-substratum interaction on hemicyst formation by MDCK cells, In Vitro 16:461–468.PubMedCrossRefGoogle Scholar
  36. Rindler, M. J., and Saier, M. H., Jr., 1981, Evidence for Na+, H+ antiport in cultured dog kidney cells (MDCK), J. Biol. Chem. 256:10820–10825.PubMedGoogle Scholar
  37. Rindler, M. J., Chuman, L. M., and Saier, M. H., Jr., 1977, Hormone responsiveness of an established but differentiated kidney epithelial cell line (MDCK), Fed. Proc. 36:911.Google Scholar
  38. Rindler, M. J., Chuman, L. M., Shaffer, L., and Saier, M. H., Jr., 1979a, Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK), J. Cell Biol. 81:635–648.PubMedCrossRefGoogle Scholar
  39. Rindler, M. J., Taub, M., and Saier, M. H., Jr., 1979b, Uptake of 22Na+ by cultured dog kidney cells (MDCK), J. Biol. Chem. 254:11431–11439.PubMedGoogle Scholar
  40. Rindler, M. J., McRoberts, J. A., and Saier, M. H., Jr., 1982, (Na+ −K+ ) cotransport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+, J. Biol. Chem. 257:2254–2259.PubMedGoogle Scholar
  41. Rodríquez-Boulán, E., and Pendergast, M., 1980, Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells, Cell 20:45–54.CrossRefGoogle Scholar
  42. Rodríguez-Boulán, E., and Sabatini, D. D., 1978, Asymmetric budding of viruses in epithelial monolayers: a model system for study of epithelial polarity, Proc. Natl. Acad. Sci. USA 75:5071–5075.PubMedCrossRefGoogle Scholar
  43. Rozengurt, E., and Heppel, L. A., 1975, Serum rapidly stimulates ouabain-sensitive 86Rb+ influx in quiescent 3T3 cells, Proc. Natl. Acad. Sci. USA 72:4492–4495.PubMedCrossRefGoogle Scholar
  44. Simmons, N. L., 1981a, Ion transport in “tight” epithelial monolayers of MDCK cells, J. Membr. Biol. 59:105–114.PubMedCrossRefGoogle Scholar
  45. Simmons, N. L., 1981b, Stimulation of Cl secretion by exogenous ATP in cultured MDCK epithelial monolayers, Biochim. Biophys. Acta 646:231–242.PubMedCrossRefGoogle Scholar
  46. Simmons, N. L., Brown, C. D. A., and Rugg, E. L., 1984, The action of adrenaline upon MDCK cells, Fed. Proc., in press.Google Scholar
  47. Smith, J. B., and Rozengurt, E., 1978, Lithium transport by fibroblastic mouse cells: characterization and stimulation by serum and growth factors in quiescent cultures, J. Cell. Physiol. 97:441–450.PubMedCrossRefGoogle Scholar
  48. Taub, M., and Saier, M. H., Jr., 1979, Regulation of 22Na+ transport by calcium in an established kidney epithelial cell line, J. Biol. Chem. 254:11440–11444.PubMedGoogle Scholar
  49. Taub, M., Chuman, L., Saier, M. H., Jr., and Sato, G. H., 1979, The growth of kidney epithelial cell line (MDCK) in hormone supplemented, serum-free medium, Proc. Natl. Acad. Sci. USA 76:3338–3342.PubMedCrossRefGoogle Scholar
  50. Ussing, H. H., 1954, Active transport of inorganic ions, Symp. Soc. Exp. Biol. 8:407.Google Scholar
  51. Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–405.PubMedCrossRefGoogle Scholar
  52. Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK, J. Cell. Physiol. 110:291–304.CrossRefGoogle Scholar
  53. Villereal, M. L., 1981, Sodium fluxes in human fibroblasts: Kinetics of serum-dependent and serum independent pathways, J. Cell. Physiol. 108:251–259.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • S. Fernández-Castelo
    • 2
  • J. J. Bolívar
    • 1
  • R. López-Vancell
    • 3
  • G. Beaty
    • 3
  • M. Cereijido
    • 1
  1. 1.Departamento de Fisiología y BiofisicaCentro de Investigatión y Estudios AvanzadosMéxico, D.F.Mexico
  2. 2.Department of Electrical EngineeringUniversidad Autónoma, Metropolitana, Unidad IztapalapaMéxico, D.F.Mexico
  3. 3.Department of Health SciencesUniversidad Autónoma, Metropolitana, Unidad IztapalapaMéxico, D. F.Mexico

Personalised recommendations