Advertisement

Electrical Properties of MDCK Cells

  • L. González-Mariscal
  • L. Borboa
  • R. López-Vancell
  • G. Beaty
  • M. Cereijido

Abstract

The electrical characterization of a transporting epithelium requires information three main aspects: (1) the overall electrical properties across the whole cell layer; (2) the transcellular permeation route; and (3) the paracellular pathway. In the present article we describe assumptions, techniques, efforts, and information collected on these aspects of the monolayer of MDCK cells, which under certain culturing conditions behave as a natural transporting epithelium (Misfeldt et al., 1976; Cereijido et al., 1978a,b; Valentich et al., 1979). Furthermore, we also describe our efforts to relate the electrical properties to different structural features (e.g., the strands of the occluding junctions) and to intracellular organelles (e.g., the cytoskeleton), both under steady-state conditions and under transient conditions such as the establishment of the junctions, the removal of Ca2+, and the addition of test substances such as cytochalasin and colchicine.

Keywords

MDCK Cell Paracellular Pathway Kind Permission Mock Cell Transcellular Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentzel, C. J., Hainau, B., Ho, S., Hui, S. W., Edelman, A., Anagstopoulus, T., and Benedetti, E. L., 1980, Cytoplasmic regulation of tight junction permeability: Effect of plant cytokinins, Am. J. Physiol. 239:C75–C89.PubMedGoogle Scholar
  2. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978a, Polarized monolayers formed by epithelial cells on a permeable and transluscent support. J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  3. Cereijido, M., Rotunno, C. A., Robbins, E. S., and Sabatini, D. D., 1978b, Polarized epithelial membranes produced in vitro, in: Membrane Transport Processes I (J. F. Hoffman, ed.), Raven Press, New York.Google Scholar
  4. Cereijido, M., Stefani, E., and Martínez-Palomo, A., 1980, Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity, J. Membr. Biol. 53:19–32.PubMedCrossRefGoogle Scholar
  5. Cereijido, M., Meza, I., and Martínez-Paloma, A., 1981, Occluding junctions in cultured epithelial monolayers, Am. J. Physiol. 240:C96–C102.PubMedGoogle Scholar
  6. Cereijido, M., Stefani, E., and Chávez de Ramírez, B., 1982, Occluding junctions of the Necturus gallbladder, J. Membr. Biol. 70:15–25.PubMedCrossRefGoogle Scholar
  7. González-Mariscal, L., Chávez de Ramírez, B., and Cereijido, H., 1984, The effect of temperature on the occluding junctions of monolayers of epithelioid cells (MDCR), J. Membr. Biol. 79: 175–184.PubMedCrossRefGoogle Scholar
  8. Hoi Sang, V., Saier, M. H., Jr., and Ellisman, M. H., 1980, Tight junction formation in the establishment of intramembranous particle polarity in aggregating MDCK cells. Effect of drug treatment, Exp. Cell Res. 128:223–235.CrossRefGoogle Scholar
  9. Martínez-Palomo, A., and Erlij, D., 1975, Structure of tight junctions in epithelia with different permeability, Proc. Natl. Acad. Sci. U.S.A. 72(11):4487–4491.PubMedCrossRefGoogle Scholar
  10. Martínez-Palomo, A., Meza, I., Beaty, G., and Cereijido, M., 1980, Experimental modulation of occluding junctions in a cultured transporting epithelium, J. Cell. Biol. 87:736–745.PubMedCrossRefGoogle Scholar
  11. Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., and De Camilli, P., 1978, Ca2 + dependent desassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs, J. Cell Biol. 79:156–172.PubMedCrossRefGoogle Scholar
  12. Meza, I., Ibarra, G., Sabanero, M., Martínez-Palomo, A., and Cereijido, M., 1980, Occluding junctions and cytoskeletal components in a cultured transporting epithelium, J. Cell. Biol. 87:746–754.PubMedCrossRefGoogle Scholar
  13. Misfeldt, D. S., Hammamoto, S. T., and Pitelka, D. K., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. U.S.A. 73:1212–1216.PubMedCrossRefGoogle Scholar
  14. Rabito, C., Tchao, R., Valentich, J. D., and Leighton, J., 1978, Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney, J. Membr. Biol. 43:351–365.PubMedCrossRefGoogle Scholar
  15. Simmons, N. L., 1981, Ion transport in “tight” epithelial monolayers of MDCK cells, J. Membr. Biol. 59:105–114.PubMedCrossRefGoogle Scholar
  16. Stefani, E., and Cereijido, M., 1983, Electrical properties of cultured epithelioid cells (MDCK), J. Membr. Biol. 73:177–184.PubMedCrossRefGoogle Scholar
  17. Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–405.PubMedCrossRefGoogle Scholar
  18. Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line (MDCK), J. Cell Physiol. 100: 291–304.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • L. González-Mariscal
    • 1
  • L. Borboa
    • 1
  • R. López-Vancell
    • 2
  • G. Beaty
    • 2
  • M. Cereijido
    • 1
  1. 1.Departmento de Fisiología y BiofísicaCentro de Investigación y de Estudios AvanzadosMéxico, D. F.Mexico
  2. 2.Department of Health SciencesUniversidad Autonóma Metropolitana, Unidad IztapalapaMéxico, D. F.Mexico

Personalised recommendations