Importance of Hormonally Defined, Serum-Free Medium for in Vitro Studies Concerning Epithelial Transport

  • Mary Taub


Hormonally defined, serum-free media have been developed for a number of different types of epithelial cell lines. Some of these cell lines, such as the MDCK and the LLC—PK1 pig kidney cell line, have been demonstrated to possess the capacity for transepithelial solute transport in vitro. MDCK and LLC—PK1 cells are of particular interest to study in this regard, as their primary function in vivo is to reabsorb solutes. However, the transport properties of many other epithelial cell lines are also of inferest. Although many of the epithelial cells in such cultures possess differentiated functions that are not primarily reabsorptive in nature, these cells often must transport particular solutes across the cell layer, in order to carry out their primary differentiated functions. For example, thyroid and testicular epithelial cells possess the capacity for trans-epithelial transport of select solutes in vivo. Such transepithelial transport ultimately permits the secretion of thyroid hormone in the thyroid and facilitates germ cell maturation in the testes.


Epithelial Cell Line Madin Darby Canine Kidney Madin Darby Canine Kidney Cell Kidney Epithelial Cell Epithelial Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abaza, N. A., Leighton, J., and Schultz, S., 1974, Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney, In Vitro 10:172–183.CrossRefGoogle Scholar
  2. Allegra, J. C., and Lippman, M. E., 1978, Growth of a human breast cancer cell line in serum-free hormone-supplemented medium, Cancer Res. 38:3823–3829.PubMedGoogle Scholar
  3. Allen, W. R., Nilsen-Hamilton, M., and Hamilton, R. T., 1981, Insulin and growth factors stimulate rapid posttranslational changes in glucose transport in ovarian granulosa cells, J. Cell Physiol. 108:15–24.PubMedCrossRefGoogle Scholar
  4. Ambesi-Impiombato, F. S., Parks, L. A. M., and Coon, H. G., 1980, Culture of hormone-dependent functional epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA 77:3455–3459.PubMedCrossRefGoogle Scholar
  5. Auersperg, N., 1969, Histogenetic behavior of tumors. I. Morphologic variation in vitro of two related human carcinoma cell lines, J. Natl. Cancer Inst. 43:151–173.PubMedGoogle Scholar
  6. Barnes, D. W., 1982, Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell cultures, J. Cell Biol. 93:7–4.CrossRefGoogle Scholar
  7. Barnes, D., and Sato, G., 1979, Growth of a human mammary tumor cell line in a serum free medium, Nature 281:388–389.PubMedCrossRefGoogle Scholar
  8. Birek, C., Aubin, J. E., Bhargava, U., Brunette, D. M., and Melcher, A. H., 1982, Dome formation by oral epithelia in vitro, In Vitro 18:382–392.PubMedCrossRefGoogle Scholar
  9. Bisbee, C. A., Machen, T. E., and Bern, H. A., 1979, Mouse mammary epithelial cells in floating collagen gels: Transepithelial ion transport and effects of prolactin, Proc. Natl. Acad. Sci. USA 76:536–540.PubMedCrossRefGoogle Scholar
  10. Boyer, J. L., 1980, New concepts of mechanisms of hepatocyte bile formation, Physiol. Rev. 60:303–326.PubMedGoogle Scholar
  11. Cameron, G., 1953, Secretory activity of the choroid plexus in tissue culture, Anat. Rec. 117:115–125.PubMedCrossRefGoogle Scholar
  12. Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol. 77:853–880.PubMedCrossRefGoogle Scholar
  13. Cereijido, M., Ehrenfeld, J., Meza, I., and Martinez-Palomo, 1980, Structural and functional membrane polarity in cultured monolayers of MDCK cells, J. Membr. Biol. 52:147–159.PubMedCrossRefGoogle Scholar
  14. Chuman, L., Fine, L. G., Cohen, A. H., and Saier, M. H., 1982, Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium, J. Cell Biol. 94:506–510.PubMedCrossRefGoogle Scholar
  15. Chung, S. D., Alavi, N., Livingston, D., Hiller, S., and Taub, M., 1982, Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium, J. Cell Biol. 95:118–126.PubMedCrossRefGoogle Scholar
  16. Darmon, M, Bottenstein, J., and Sato, G., 1981, Neural differentiation following culture of embryonal carcinoma cells in a serum free defined medium, Dev. Biol. 85:463–473.PubMedCrossRefGoogle Scholar
  17. Devis, P., Hiller, S., and Taub, M., 1982, Prostaglandin E1 regulates the growth and function of Madin Darby canine kidney (MDCK) cells in a hormonally defined medium, J. Cell Biol. 95:188a.Google Scholar
  18. Duffey, M. E., Hainau, B., Ho, S., and Bentzel, C. J., 1981, Regulation of epithelial tight junction permeability by cyclic AMP, Nature 294:451–453.PubMedCrossRefGoogle Scholar
  19. Edelman, I. S., 1974, Thyroid thermogenesis, N. Engl. J. Med. 290:1303–1308.PubMedCrossRefGoogle Scholar
  20. Goldring, S. R., Dayer, J. M., Ausiello, D. A., and Krane, S. M., 1978, A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or Vasopressin, Biochem. Biophys. Res. Com. 83:434–440.PubMedCrossRefGoogle Scholar
  21. Handler, J. S., Steel, R. E., Sahib, M. K., Wade, J. B., Preston, A. S., Lawson, N. L., and Johnson, J. P., 1979, Toad urinary bladder epithelial cells in culture: Maintenance of epithelial structure, sodium transport and response to hormones, Proc. Natl. Acad. Sci. USA 76:4151–4155.PubMedCrossRefGoogle Scholar
  22. Hayashi, I., and Sato, G. H., 1976, Replacement of serum by hormones permits growth of cells in defined medium, Nature 256:132–134.CrossRefGoogle Scholar
  23. Hayashi, I., Lamer, J., and Sato, G., 1978, Hormonal growth control of cells in culture, In Vitro 14:23–30.PubMedCrossRefGoogle Scholar
  24. Huh, N., Takaoka, T., and Katsuka, H., 1977, Establishment of epithelial cell lines from rat glandular stomachs, Jpn. J. Exp. Med. 47:413–424.PubMedGoogle Scholar
  25. Hutchings, S. E., and Sato, G. H., 1978, Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones, Proc. Natl. Acad. Sci. USA 75:901–904.PubMedCrossRefGoogle Scholar
  26. Iino, Y., and Imai, M., 1978, Effects of Prostaglandins on Na transport in isolated collecting tubules, Pflugers Arch. 373:125–132.PubMedCrossRefGoogle Scholar
  27. Imagawa, W., Tommoka, Y., and Nandi, S., 1982, Serum-free growth of normal and tumor mouse mammary epithelial cells in primary cultures, Proc. Natl. Acad. Sci. USA 79:4074–4077.PubMedCrossRefGoogle Scholar
  28. Koch, K. S., and Leffert, H. L., 1979, Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation, Cell 18:153–163.PubMedCrossRefGoogle Scholar
  29. Leighton, J., Brada, Z., Estes, L. W., and Justh, G., 1969, Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney, Science 158:472–473.CrossRefGoogle Scholar
  30. Leighton, J., Estes, L. W., Mansukhani, S., and Brada, Z., 1970, A cell line derived from normal dog kidney (MDCK) exhibiting qualities of papillary adenocarcinoma and or renal tubular epithelium, Cancer 26:1022–1028.PubMedCrossRefGoogle Scholar
  31. Lever, J. E., 1979a, Inducers of mammalian differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK), Proc. Natl. Acad. Sci. USA 76:1323–1327.PubMedCrossRefGoogle Scholar
  32. Lever, J. E., 1979b, Cyclic AMP and inducers of mammalian cell differentiation stimulate dome formation in mammary and renal epithelial cell cultures, in: Hormones and Cell Culture, Book B, Cold Spring Harbor Conferences on Cell Proliferation, Volume 6, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 727–738.Google Scholar
  33. Lin, M. C., Koh, S. W. M., Dykman, D. D., Beckner, S. K., and Shih, T. Y., 1982, Loss and restoration of glucagon receptors and responsiveness in a transformed kidney cell line, Exp. Cell Res. 142:181–189.PubMedCrossRefGoogle Scholar
  34. Logsdon, C. D., Bisbee, C. A., Rutter, M. J., and Machen, T. E., 1982, Fetal rabbit gastric epithelial cells cultures on floating collagen gels, In Vitro 18:233–242.PubMedCrossRefGoogle Scholar
  35. Ludens, J. H., Vaughn, D. A., Mawe, R. C., and Fanestil, D. D., 1978, Specific binding of deoxycorticosterone by canine kidney cells in culture, J. Steroid Biochem. 9:17–21.PubMedCrossRefGoogle Scholar
  36. Marver, D., Schwartz, M. J., and Kokko, J. P., 1981, Direct effects of corticoid hormones on the mammalian nephron, Ann. N.Y. Acad. Sci. 372:39–55.PubMedCrossRefGoogle Scholar
  37. Mason, J. R., Williams, M. C., Widdicombe, J. H., Sanders, M. J., Misfeldt, D. S., and Berry, L. C., Jr., 1982, Transepithelial transport by pulmonary alveolar type II cells in primary culture, Proc. Natl. Acad. Sci. USA 79:6033–6037.PubMedCrossRefGoogle Scholar
  38. Mather, J. P., and Sato, G. H., 1979, The growth of mouse melanoma cells in hormone-supplemented serum-free medium, Exp. Cell Res. 120:191–200.PubMedCrossRefGoogle Scholar
  39. Mather, J. P., Zhuang, L. Z., Perez-Infante, V., and Phillips, D. M., 1982, Culture of testicular cells in hormone-supplmented serum-free medium, Ann. N.Y. Acad. Sci. 383:44–68.PubMedCrossRefGoogle Scholar
  40. McCombs, W. B., III, Leibovitz, A., McCoy, C. E., Stinson, J. C., and Berlin, J. D., 1976, Morphologic and immunologic studies of a human colon tumor cell line (SW-48), Cancer 38:2316–2327.PubMedCrossRefGoogle Scholar
  41. McGrath, C. M., 1975, Cell organization and responsiveness to hormone in vitro: Genesis of domes in mammary cell cultures, Amer. Zool. 15:231–236.Google Scholar
  42. Misfeidt, D. S., and Sanders, M. J., 1981, Transepithelial transport in cell culture, d-glucose transport by a pig kidney cell line (LLC—PK1), J. Mem. Biol. 59:13–18.CrossRefGoogle Scholar
  43. Misfeidt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.CrossRefGoogle Scholar
  44. Morel, F., 1981, Sites of hormone action in the mammalian nephron, Am. J. Physiol. 240:.F159–F164.PubMedGoogle Scholar
  45. Mullin, J. M., Weibel, J., Diamond, L., and Kleinzeller, A., 1980, Sugar transport in the LLC—PK1 renal epithelial cell line: Similarity to mammalian kidney and the influence of cell density, J. Cell Physiol. 104:375–389.PubMedCrossRefGoogle Scholar
  46. Murakami, H., and Masui, H., 1980, Hormonal control of human colon carcinoma cell growth in serum-free medium, Proc. Natl. Acad. Sci. USA 77:3464–3468.PubMedCrossRefGoogle Scholar
  47. Orly, J., Sato, G., and Erickson, G. F., 1980, Serum suppresses the experssion of hormonally induced functions in cultured granulosa cells, Cell 20:817–827.PubMedCrossRefGoogle Scholar
  48. Perez-Infante, V., and Mather, J. P., 1982, The role of transferrin in the growth of testicular cell lines in serum-free medium, Exp. Cell Res. 142:325–332.PubMedCrossRefGoogle Scholar
  49. Rabito, C. A., and Karish, M. V., 1982, Polarized amino acid transport by an epithelial cell line of renal origin (LLC—PK1), J. Biol. Chem. 257:6802–6808.PubMedGoogle Scholar
  50. Rabito, C. A., Tchao, R., Valantich, J., and Leighton, J., 1980, Effect of cell—substratum interaction on hemicyst formation by MDCK cells, In Vitro 16:461–468.PubMedCrossRefGoogle Scholar
  51. Rephaeli, A., and Parsons, S. M., 1982, Calmodulin stimulation of 45Ca2+ transport and protein phosphorylation in cholinergic synaptic vesicles, Proc. Natl. Acad. Sci. USA 79:5783–5787.PubMedCrossRefGoogle Scholar
  52. Rindler, M. J., Chuman, L. M., Shaffer, L., and Saier, M. H., 1979, Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK), J. Cell Biol. 81:635–648.PubMedCrossRefGoogle Scholar
  53. Rizzino, A., and Crowley, C., 1980, Growth and differentiation of embryonal carcinoma cell line F9 in defined media, Proc. Natl. Acad. Sci. USA 77:457–461.PubMedCrossRefGoogle Scholar
  54. Rizzino, A., and Sato, G., 1978, Growth of embryonal carcinoma cells in serum-free medium, Proc. Natl. Acad. Sci. USA 75:1844–1848.PubMedCrossRefGoogle Scholar
  55. Rizzino, A., and Sherman, M. I., 1979, Development and differentiation of mouse blastocysts in serum-free medium, Exp. Cell Res. 121:221–233.PubMedCrossRefGoogle Scholar
  56. Rudland, P. S., Bennett, D. C., and Warburton, M. D., 1979, Hormonal control of growth and differentiation of cultured rat mammary gland epithelial cells, in: Hormones and Cell Culture, Book B, Cold Spring Harbor Conference on Cell Proliferation, Volume 6, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 677–700.Google Scholar
  57. Salas-Prato, M., 1982, Growth of fetal mouse liver cells in hormone-supplemented serum-free medium, in: Growth of Cells in Hormonally Defined Media, Book A, Cold Spring Harbor Conferences in Cell Proliferation, Volume 9, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 615–624.Google Scholar
  58. Salomon, D. S., Liotta, L. A., and Kidwell, W. R., 1981, Differential response to growth factor by rat mammary epithelium plated on different collagen substrates in serum-free medium, Proc. Natl. Acad. Sci. USA 78:382–386.PubMedCrossRefGoogle Scholar
  59. Sanders, M. J., Simon, L. M., and Misfeldt, D. S., 1983, Transepithelial transport in cell culture: Bioenergetics of Na, d-glucose-coupled transport, J. Cell Physiol. 114:263–266.PubMedCrossRefGoogle Scholar
  60. Sato, G., and Reid, L., 1978, Replacement of serum in cell culture by hormones, in: International Review of Biochemistry, Volume 20, Biochemistry and Mode of Action of Hormones II (H. V. Rickenberg, ed.), University Park Press, Baltimore, Maryland, pp. 219–251.Google Scholar
  61. Scharschmidt, B. F., and Stephens, J. E., 1981, Transport of sodium, chloride, and taurocholate by cultured rat hepatocytes, Proc. Natl. Acad. Sci. USA 78:986–990.PubMedCrossRefGoogle Scholar
  62. Simonian, M. H., White, M. L., and Gill, G. N., 1982, Growth and function of cultured bovine adrenocortical cells in a serum-free, defined medium, Endocrinology 111:919–927.PubMedCrossRefGoogle Scholar
  63. Sinback, D. N., and Coon, H. G., 1982, Electrophysiological and pharmacological properties of cultured rat thyroid cells, J. Cell Physiol. 112:391–402.PubMedCrossRefGoogle Scholar
  64. Stampfer, M. R., Hackett, A. J., Smith, H. S., Hancock, M. C., Leung, J. P., and Edgington, T. S., 1981, Growth of human mammary epithelium in culture and expression of tumor-specific properties, in: Growth of Cells in Hormonally Defined Media, Book B, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 819–830.Google Scholar
  65. Takehuchi, A., 1977, Functional transmission, I. Postsynaptic mechanisms, in: Handbook of Physiology, Volume 1 (E. R. Kandel, ed.), American Physiological Society, Bethesda, Maryland, Section 1, pp. 295–327.Google Scholar
  66. Taub, M., and Saier, M. H., Jr., 1979, Regulation of 22Na+ uptake by calcium in an established kidney epithelial cell line, J. Biol. Chem. 254:11440–11444.PubMedGoogle Scholar
  67. Taub, M., and Saier, M. H., Jr., 1981, Amiloride-resistant Madin—Darby canine kidney (MDCK) cells exhibit decreased cation transport, J. Cell Physiol. 106:191–199.PubMedCrossRefGoogle Scholar
  68. Taub, M., and Sato, G. H., 1979, Growth of kidney epithelial cells in hormone-supplemented serum-free medium, J. Supramol. Struct. 11:207–216.PubMedCrossRefGoogle Scholar
  69. Taub, M., and Sato, G., 1980, Growth of functional primary cultures at kidney epithelial cells in defined medium, J. Cell. Physiol. 105:369–378.PubMedCrossRefGoogle Scholar
  70. Taub, M., Chuman, L., Saier, M. H., and Sato, G., 1979, Growth of Madin—Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented serum-free medium, Proc. Natl. Acad. Sci. USA 76:3338–3342.PubMedCrossRefGoogle Scholar
  71. Taub, M., Devis, P., and Hiller, S., 1984, Madin Darby canine kidney variant cells have altered cyclic AMP metabolism and altered responsiveness to PGE1 in a hormonally defined medium, J. Cell. Biochem. submitted for publication.Google Scholar
  72. Toyoshima, K., Valentich, J. D., Tchao, R., and Leighton, J., 1976, Conditions of cultivation required for the formation of hemicysts in vitro by rat bladder carcinoma R-4909, Cancer Res. 36:2800–2806.PubMedGoogle Scholar
  73. Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK, J. Cell Physiol. 100:291–304.PubMedCrossRefGoogle Scholar
  74. Villereal, M. L., 1981, Sodium fluxes in human fibroblasts: Effects of serum Ca2+ and amiloride, J. Cell Physiol. 107:359–369.PubMedCrossRefGoogle Scholar
  75. Waymouth, C., Ward, P. F., and Blake, S. L., 1982, Mouse prostatic epithelial cells in defined cultured media, in: Growth of Cells in Hormonally Defined Media, Book B, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 1097–1108.Google Scholar
  76. Wu, R., and Smith, D., 1982, Continuous multiplication of rabbit tracheal epithelial cells in a defined, hormone-supplemented medium, In Vitro 18:800–812.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Mary Taub
    • 1
  1. 1.Department of Biochemistry, School of MedicineState University of New York at BuffaloBuffaloUSA

Personalised recommendations