Advertisement

Hormonally Defined, Serum-Free Media for Epithelial Cells in Culture

  • David Barnes

Abstract

Through most of the 75-year history of in vitro culture of mammalian cells and tissues, investigators have found it necessary for maintenance and growth of the cells to add to basal nutrient culture media some type of undefined and often inconsistent biological fluid such as lymph, milk, plasma, or serum, amniotic or spinal fluid (Harrison, 1907; Carrel, 1913; Temin et al., 1972; Brooks, 1975). Most of the studies in the last 50 years have used serum-supplemented media for the growth of both fibroblastic and epithelial cell types in culture. Although the disadvantages of the use of undefined supplements such as serum in culture media were recognized from the beginning, progress toward replacing serum with defined components of the media was slow, and the most successful early attempts at cell culture in defined media were those in which the approach was to “adapt” cells to a predetermined serum-free medium formulation, a procedure that in most cases probably selected for a small subpopulation within the cells used to initiate the cultures (Higuchi, 1973).

Keywords

Cold Spring Harbor Madin Darby Canine Kidney Cell Culture Method Embryonal Carcinoma Cell Madin Darby Canine Kidney Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allegra, J. C., and Lippman, M. E., 1978, Growth of a human breast cancer cell line in serum-free hormone-supplemented medium, Cancer Res. 38:3823–3829.PubMedGoogle Scholar
  2. Ambesi-Impiombato, F. S., Parks, L. A. M., and Coon, H. G., 1980, Culture of hormone dependent functional epithelial cells from rat thyroids, Proc. Natl. Acad. Sci. USA 77:3455–3459.PubMedCrossRefGoogle Scholar
  3. Barnes, D., 1980, Factors that stimulate proliferation of breast cancer cells in vitro in serum-free medium, in: Cell Biology of Breast Cancer (C. McGrath, M. Brennan, and M. Rich, eds.), Academic Press, New York, pp. 277–287.Google Scholar
  4. Barnes, D. W., 1982a, Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture, J. Cell Biol. 93:1–4.PubMedCrossRefGoogle Scholar
  5. Barnes, D. W., 1982b, Growth of A-431 human epidermoid carcinoma in serum-free cell culture: Inhibition by epidermal growth factor, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 937–941.Google Scholar
  6. Barnes, D., and Sato, G., 1979, Growth of a human mammary tumor cell line in a serum-free medium, Nature 281:388–389.PubMedCrossRefGoogle Scholar
  7. Barnes, D., and Sato, G., 1980a, Methods for growth of cultured cells in serum-free medium, Anal. Biochem. 102: 255–270.PubMedCrossRefGoogle Scholar
  8. Barnes, D., and Sato, G., 1980b, Serum-free cell culture; a unifying approach, Cell 22:649–655.PubMedCrossRefGoogle Scholar
  9. Barnes, D., Wolfe, R., Serrero, G., McClure, D., and Sato, G., 1980, Effects of a serum spreading factor on growth and morphology of cells in serum-free medium, J. Supramol. Struct. 14:47–63.PubMedCrossRefGoogle Scholar
  10. Barnes, D. W., van der Bosch, J., Masui, H., Miyazaki, K., and Sato, G., 1981, The culture of human tumor cells in serum-free medium, in: Methods in Enzymology, Volume 79: Interferons, Part B (S. Pestka, ed.), Academic Press, New York, pp. 368–391.Google Scholar
  11. Barnes, D. W., Darmon, M., and Orly, J., 1982, Serum-spreading factor: Effects on RF1 rat ovary cells and 1003 mouse embryonal carcinoma cells in serum-free media, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 155–167.Google Scholar
  12. Barnes, D. W., Silnutzer, J., See, C., and Shaffer, M., 1983a, Characterization of human serum spreading factor with monoclonal antibody, Proc. Natl. Acad. Sci. USA 80:1362–1366.PubMedCrossRefGoogle Scholar
  13. Barnes, D., Sirbasku, D., and Sato, G. (eds.), 1984, Cell Culture Methods for Molecular and Cell Biology, Volumes 1–4 (D. Barnes, D. Sirbasku, and G. Sato, eds.) Liss, New York.Google Scholar
  14. Bottenstein, J., 1980, Serum-free culture of neuroblastoma cells, in: Advances in Neuroblastoma Research (A. Evans, ed.), Raven Press, New York, pp. 161–170.Google Scholar
  15. Bottenstein, J., 1981, Differentiated properties of neuronal cell lines, in: Functionally Differentiated Cell Lines (G. Sato, ed.), Liss, New York, pp. 155–184.Google Scholar
  16. Bottenstein, J. E., and Sato, G. H., 1979, Growth of a rat neuroblastoma cell line in serum-free medium, Proc. Natl. Acad. Sci. USA 76:514–517.PubMedCrossRefGoogle Scholar
  17. Bottenstein, J., and Sato, G., 1980, Fibronectin and polylysine requirement for proliferation of neuroblastoma cells in defined medium, Exp. Cell Res. 129:361–366.PubMedCrossRefGoogle Scholar
  18. Bottenstein, J., Hayashi, I., Hutchings, S., Masui, H., Mather, J., McClure, D. B., Ohasa, S., Rizzino, A., Sato, G., Serrero, G., Wolfe, R., and Wu, R., 1979a, The growth of cells in serum-free hormone-supplemented media, Methods Enzymol. 58:94–109.PubMedCrossRefGoogle Scholar
  19. Bottenstein, J. E., Sato, G. H., and Mather, J. P., 1979b, Growth of neuroepithelial-derived cell lines in serum-free hormone-supplemented media, in: Cold Spring Harbor Conferences on Cell Proliferation: Hormones in Cell Culture, Volume 6 (G. H. Sato and R. Ross, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 531–544.Google Scholar
  20. Bottenstein, J. E., Skaper, S. D., Varon, S. S., and Sato, G. H., 1980, Selective survival of neurons from chick embryo sensory ganglionic dissociates utilizing serum-free supplemented medium, Exp. Cell Res. 125:183–190.PubMedCrossRefGoogle Scholar
  21. Brooks, R. F., 1975, Growth regulation in vitro and the role of serum, in: Structure and Function of Plamsa Proteins (A. C. Allison, ed.), Plenum Press, New York, pp. 1–112.Google Scholar
  22. Carney, D. N., Bunn, P. A., Gazdar, A. F., Pagan, J. A., and Minna, J. D., 1981, Selective growth in serum-free hormone supplemented medium of tumor cells obtained by biopsy from patients with small cell carcinoma of the lung, Proc. Natl. Acad. Sci. USA 78:3185–3189.PubMedCrossRefGoogle Scholar
  23. Carrel, A., 1913, Artificial activation of the growth in vitro of connective tissue, J. Exp. Med. 17:14–19.PubMedCrossRefGoogle Scholar
  24. Chaproniere-Rickenberg, D. M., and Webber, M. M., 1982, A chemically defined medium for the growth of adult human prostatic epithelium, in: Growth of Cells in Hormonally Defined Media, Volume 9, Book B (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 1109–1115.Google Scholar
  25. Cherington, P. V., Smith, B. L., and Pardee, A. B., 1979, Loss of epidermal growth factor requirement and malignant transformation, Proc. Natl. Acad. Sci. USA 76:3937–3941.PubMedCrossRefGoogle Scholar
  26. Chuman, L., Fine, L. G., Cohen, A. I., and Saier, M. H., 1982, Continuous growth of proximal tubular kidney cells in hormone-supplemented serum-free medium, J. Cell Biol. 94:506–510.PubMedCrossRefGoogle Scholar
  27. Chung, S. D., Alavi, N., Livingston, D., Hiller, S., and Taub, M., 1982, Characterization of primary rabbit kidney cultures that express proximal tubule functions in hormonally defined medium, J. Cell Biol. 95:118–126.PubMedCrossRefGoogle Scholar
  28. Darmon, M., 1983, Laminin provides a better substratum than fibronectin for attachment, growth and differentiation of 1003 embryonal carcinoma cells, In Vitro 18:997–1003.CrossRefGoogle Scholar
  29. Faivre-Bauman, A., Rosenbaum, E., Puymirat, J., Grouselle, D., and Tixier-Vidal, A., 1981, Differentiation of fetal mouse hypothalmic cells in serum-free medium, Dev. Neurosci. 4:118–125.PubMedCrossRefGoogle Scholar
  30. Gill, G. N., Hornsby, P. J., and Simonian, M. H., 1979, Regulation of growth and differentiated function of bovine adrenocortical cells, in: Cold Spring Harbor Conferences on Cell Proliferation; Hormones in Cell Culture, Volume 6 (G. H. Sato and R. Ross, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 701–715.Google Scholar
  31. Goodman, R., 1984, Growth and differentiation of pheochromocytoma cells in chemically defined medium, in: Cell Culture Methods for Molecular and Cell Biology, Volume 4 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, pp. 23–36.Google Scholar
  32. Goodman, R., Chandler, C., and Herschman, H. R., 1979, Pheochromocytoma cell lines as models of neuronal differentiation, in: Cold Spring Harbor Conferences on Cell Proliferation, Hormones in Cell Culture, Volume 6 (G. H. Sato and R. Ross, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 653–669.Google Scholar
  33. Gospodarowicz, D., 1984, Preparations and uses of lipoproteins to culture normal diploid and tumor cells under serum-free conditions, in: Cell Culture Methods for Molecular and Cell Biology, Volume 1 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, pp. 69–88.Google Scholar
  34. Ham, R. G., 1981, Survival and growth requirements of nontransformed cells, in: Handbook of Experimental Pharmacology (I. N. Baserga, ed.), Springer, New York, pp. 13–38.Google Scholar
  35. Ham, R. G., 1982, Importance of the basal nutrient medium in the design of hormonally defined media, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 39–60.Google Scholar
  36. Ham, R. G., and McKeehan, W. L., 1978, Nutritional requirements for clonal growth of non-transformed cells, in: Nutritional Requirements of Cultured Cells (I. N. Katsuta, ed.), Japan Scientific Society Press, Tokyo, pp. 361–115.Google Scholar
  37. Ham, R. G., and McKeehan, W. L., 1979, Media and growth requirements, Methods Enzymol. 58:44–95.PubMedCrossRefGoogle Scholar
  38. Harrison, R. G., 1907, Observations on the living developing nerve fiber, Proc. Soc. Exp. Biol. Med. 4:140–143.Google Scholar
  39. Hayashi, I., and Sato, G. H., 1976, Replacement of serum by hormones permits growth of cells in a defined medium, Nature (London) 259:132–134.CrossRefGoogle Scholar
  40. Hayashi, I., Sato, G. H., and Larner, J., 1978, Hormonal growth control of cells in culture, In Vitro 14:23–30.PubMedCrossRefGoogle Scholar
  41. Higuchi, K., 1973, Cultivation of animal cells in chemically defined media, a review, Adv. Appl. Microbiol. 16:111–160.PubMedCrossRefGoogle Scholar
  42. Hutchings, S. E., and Sato, G. H., 1978, Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones, Proc. Natl. Acad. Sci. USA 75:901–904.PubMedCrossRefGoogle Scholar
  43. Imagawa, W., Tomooka, Y., and Nandi, S., 1982, Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture, Proc. Natl. Acad. Sci. USA 71:4074–4077.CrossRefGoogle Scholar
  44. Kano-Sueoka, T., and Errick, J. E., 1981, Effects of phosphoethanolamine and ethanolamine on growth of mammary carcinoma cells in culture, J. Exp. Cell Res. 136:137–145.CrossRefGoogle Scholar
  45. Kano-Sueoka, T., and Errick, J. E., 1982, Roles of phosphoethanolamine, ethanolamine, and prolactin on mammary cell growth, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 727–740.Google Scholar
  46. Kano-Sueoka, T., and Hsieh, P., 1973, A rat mammary carcinoma in vivo and in vitro: Establishment of clonal lines of the tumor, Proc. Natl. Acad. Sci. USA 70:1922–1926.PubMedCrossRefGoogle Scholar
  47. Kano-Sueoka, T., Cohen, D. M., Yamaizumi, Z., Nishimura, S., Mori, M., and Fujiki, H., 1979a, Phosphoethanolamine as a growth factor of a mammary carcinoma cell line of rat, Proc. Natl. Acad. Sci. USA 76:5741–5744.PubMedCrossRefGoogle Scholar
  48. Kano-Sueoka, T., Errick, J. E., and Cohen, D. M., 1979b, Effects of hormones and a novel mammary growth factor on a rat mammary carcinoma in culture, in: Cold Spring Harbor Conferences on Cell Proliferation; Hormones in Cell Culture, Volume 6 (G. H. Sato and R. Ross, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 499–512.Google Scholar
  49. Kidwell, W. R., Salomon, D. S., Liotta, L. A., Zweibel, J. A., and Bano, M., 1982, Effects of growth factors on mammary epithelial cell proliferation and basement-membrane synthesis, in: Growth of Cells in Hormonally Defined Media (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.) Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 807–818.Google Scholar
  50. Kidwell, W. R., Bano, M., and Salomon, D. S., 1984, The growth of normal mammary epithelium on collagen in serum-free medium, in: Cell Culture Methods for Molecular and Cell Biology, Volume 2 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, in press.Google Scholar
  51. Lechner, J. F., Haugen, A., McClendon, I. A., and Pettis, E. W., 1982, Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium, In Vitro 18:633–642.PubMedCrossRefGoogle Scholar
  52. Lippman, M. E., 1984, Definition of hormones and growth factors required for optimal proliferation and expression of phenotypic response in human breast cancer cells, in: Cell Culture Methods for Molecular and Cell Biology, Volume 2 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, pp. 183–200.Google Scholar
  53. Loudes, C., Faivre-Bauman, A., Barret, A., Grouselle, D., Puymirat, A., and Tixier-Vidal, A., 1984, Functional maturation of TRH immunoreactive neurons in serum-free cultures of mouse hypothalmic cells, Develop. Brain Res., in press.Google Scholar
  54. Mather, J. P., 1980, The establishment and characterization of two distinct mouse testicular epithelial cell lines, Biol. Reprod. 23:243–250.PubMedCrossRefGoogle Scholar
  55. Mather, J. P. (ed.), 1984, Mammalian Cell Culture: The Use of Serum-Free Hormone-Supplemented Media, Plenum Press, New York.Google Scholar
  56. Mather, J. P., and Haour, F., 1981, Hormone response of testicular cells in culture: Established cell lines and primary cultures, in: Functionally Differentiated Cell Lines (G. Sato, ed.), Liss, New York, pp. 93–108.Google Scholar
  57. Mather, J. P., and Sato, G. H., 1979a, The use of hormone-supplemented serum-free media in primary cultures, Exp. Cell Res. 124:215–221.PubMedCrossRefGoogle Scholar
  58. Mather, J. P., and Sato, G. H., 1979b, The growth of mouse melanoma cells in hormone-supplemented serum-free medium, Exp. Cell Res. 12:191–200.CrossRefGoogle Scholar
  59. Mather, J. P., Saez, J. M., and Haour, F., 1981, Primary cultures of Leydig cells for rat, mouse and pig: Advantages of porcine cells for the study of gonadotropin regulation of Leydig cell function, Steroids 38:35–44.PubMedCrossRefGoogle Scholar
  60. Mather, J. P., Saez, J. M., Dray, F., and Haour, F., 1982a, Hormone—hormone and hormone-vitamin interactions in the control of growth and function of Leydig cells in vitro, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 1117–1128.Google Scholar
  61. Mather, J. P., Zhuang, L. Z., Perez-Infante, V., and Phillips, D. M., 1982b, Culture of testicular cells in hormone-supplemented serum-free medium, Ann. N.Y. Acad. Sci. 383:44–68.PubMedCrossRefGoogle Scholar
  62. McKeehan, W. L., 1982, Growth-factor—nutrient interrelationships in control of normal and transformed cell proliferation, in: Cold Spring Harbor Conferences on Cell Proliferation, Volume 9 (G. H. Sato, A. B. Pardee, and D. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 65–74.Google Scholar
  63. Minna, J. D., Carney, D. N., Oie, H., Bunn, P. A., and Gazadai, A. F., 1982, Growth of human small-cell lung cancer in defined medium, in: Growth of Cells in Hormonally Defined Medium (D. Sirbasku, A. Pardee, and G. Sato, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 627–639.Google Scholar
  64. Miyazaki, K., and Sato, G. H., 1984, Methods for growth and differentiation of human bronchogenic epidermoid carcinoma cells in serum-free media, in: Cell Culture Methods for Molecular and Cell Biology, Volume 3 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, in press.Google Scholar
  65. Miyazaki, K., Masui, H., and Sato, G., 1982, Control factors for keratinization of human bronchoogenic epidermoid carcinoma cells, in: Growth of Cells in Hormonally Defined Media, Volume 9, Book B (G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 657–661.Google Scholar
  66. Murakami, H., and Masui, H., 1980, Hormonal control of human colon carcinoma cell growth in serum-free medium, Proc. Natl. Acad. Sci. USA 77:3464–3468.PubMedCrossRefGoogle Scholar
  67. Murakami, H., Masui, H., Sato, G. H., Sueoka, N., Chow, T. P., and Kano-Sueoka, T., 1982, Growth of hybridoma cells in serum-free medium: Ethanolamine is an essential component, Proc. Natl. Acad. Sci. USA 79:1158–1162.PubMedCrossRefGoogle Scholar
  68. Orly, J., and Sato, G., 1979, Fibronectin mediates cytokinesis and growth of rat follicular cells in serum-free medium, Cell 17:295–305.PubMedCrossRefGoogle Scholar
  69. Orly, J., Sato, G., and Erickson, G. F., 1980, Serum suppresses the expression of hormonally induced functions in cultured granulosa cells, Cell 20:817–827.PubMedCrossRefGoogle Scholar
  70. Peehl, D. M., and Ham, R. G., 1980, Clonal growth of human keratinocytes with small amounts of dialyzed serum, In Vitro 16:526–538.PubMedCrossRefGoogle Scholar
  71. Puymirat, J., Loudes, C., Faivre-Bauman, A., Bourre, J. M., and Tixier-Vidal, A., 1982, Expression of neuronal functions by mouse fetal hypothalamic cells cultured in hormonally defined medium, in: Growth of Cells in Hormonally Defined Medium, Volume 9 (D. Sirbasku, A. Pardee, and G. Sato, eds.), Cold Spring Harbor Press, Cold Spring Harbor, New York, pp. 1033–1051.Google Scholar
  72. Puymirat, J., Barrett, A., Picart, R., Vigny, A., Loudes, C., Faivre-Bauman, A., and Tixier-Vidal, A., 1984, Triiodothyronine enhances the morphological maturation of dopaminergic neurons in serum-free medium cultures of fetal mouse hypothalmic cells, Neuroscience, in press.Google Scholar
  73. Reid, L., and Sato, G., 1978, Replacement of serum in cell culture by hormones, in: Biochemistry and Mode of Action of Hormones 11 (H. V. Rickenberg, ed.), University Park Press, Baltimore, pp. 219–251.Google Scholar
  74. Rizzino, A., Rizzino, H., and Sato, G., 1979, Defined media and the determination of nutritional and hormonal requirements of mammalian cells in culture, Nutr. Rev. 37:369–378.PubMedCrossRefGoogle Scholar
  75. Rockwell, G. A., McClure, D., and Sato, G. H., 1980, The growth requirements of SV40 virus-transformed Balb/C-3T3 cells in serum-free monolayer culture, J. Cell Physiol. 103:323–331.PubMedCrossRefGoogle Scholar
  76. Saier, M. H., Jr., 1984, Hormonally-defined, serum-free medium for proximal tubular kidney epithelial cell line, LLC—PK1, in: Cell Culture Methods for Molecular and Cell Biology, Volume 3 (D Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, in press.Google Scholar
  77. Salomon, D. S., Liotta, L. A., and Kidwell, W. R., 1981, Differential response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium, Proc. Natl. Acad. Sci. USA 78:382–386.PubMedCrossRefGoogle Scholar
  78. Salomon, D. S., Smith, K. B., Losonczy, I., Bano, M., Kidwell, W. R., Allesandri, G., and Gullino, P. M., 1984, Alpha2-macroglobulin, a contaminant of commercially-prepared Pedersen fetuin: Isolation, characterization and biological activity, in: Cell Culture Methods for Molecular and Cell Biology, Volume 3 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, in press.Google Scholar
  79. Sato, G. H., 1975, The role of serum in cell culture, in: Biochemical Actions of Hormones (G. Litwack, ed.), Academic Press, New York, pp. 391–396.Google Scholar
  80. Sato, G., Pardee, A. B., and Sirbasku, D. A. (eds.), 1982, Cold Spring Harbor Conferences on Cell Proliferation, Volume 9, Cold Spring Harbor Press, Cold Spring Harbor, New York.Google Scholar
  81. Shimizu, N., 1984, The use of hormone-toxin conjugates and serum-free media for the isolation and study of cell variants in hormone responses, in: Cell Culture Methods For Molecular and Cell Biology, Volume 3 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, in press.Google Scholar
  82. Simms, E., Gazdar, A. F., Abrams, P. G., and Minna, J. D., 1980, Growth of human small cell (oat cell) carcinoma of the lung in serum-free growth factor-supplemented medium, Cancer Res. 40:4356–4363.PubMedGoogle Scholar
  83. Simonian, M. H., White, M. L., and Gill, G. N., 1982, Growth and function of cultured bovine adrenocortical cells in a serum-free defined medium, Endocrinology 111:919–927.PubMedCrossRefGoogle Scholar
  84. Stampfer, M., 1984, Methods for growth of human mammary epithelial cells in monolayer culture, in: Cell Culture Methods for Molecular and Cell Biology, Volume 2 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, pp. 171–182.Google Scholar
  85. Stampfer, M., Hallowes, R. C., and Hackett, A. D., 1980, Growth of normal human mammary cells in culture, In Vitro 16:415–423.PubMedCrossRefGoogle Scholar
  86. Takemoto, H., Yokoro, K., Furth, J., and Cohen, A. J., 1962, Adrenotropic activity of mammosomatotropic tumors in rats and mice, Cancer Res. 22:917–924.PubMedGoogle Scholar
  87. Taub, M., and Livingston, D., 1981, The development of serum-free hormone-supplemented media for primary kidney cultures and their use in examining renal functions, Ann. New York Acad. Sci. 372:406–421.CrossRefGoogle Scholar
  88. Taub, M., and Sato, G., 1979, Growth of kidney epithelial cells in hormone-supplemented, serum-free medium, J. Supramol. Struc. 11:207–216.CrossRefGoogle Scholar
  89. Taub, M., and Sato, G., 1980, Growth of functional primary cultures of kidney epithelial cells in defined medium, J. Cell. Physiol. 105:369–378.PubMedCrossRefGoogle Scholar
  90. Taub, M., Chuman, L., Saier, M. H., and Sato, G., 1979, Growth of Madin Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented serum-free medium, Proc. Natl. Acad. Sci. USA 76:3338–3342.PubMedCrossRefGoogle Scholar
  91. Taub, M. U. B., Chuman, L., Rindler, M. J., Saier, M. H., Jr., and Sato, G., 1981, Alterations in growth requirements of kidney epithelial cells in defined medium associated with malignant transformation, J. Supramol. Struct. 15:63–72.CrossRefGoogle Scholar
  92. Taub, M., Saier, M. H., Jr., Chuman, L., and Hiller, S., 1983, Loss of the PGE1 requirement for MDCK cell growth associated with a defect in cyclic AMP Phosphodiesterase, J. Cell. Physiol. 114:153–161.PubMedCrossRefGoogle Scholar
  93. Temin, H. M., Pierson, R. W., and Dulak, N. C., 1972, The role of serum in control of multiplication of avian and mammalian cells in culture, in: Growth, Nutrition and Metabolism of Cells in Culture, Volume 1 (G. Rothblat and V. J. Cristafalo, eds.), Academic Press, New York, pp. 50–81.Google Scholar
  94. Tsao, M. C., Walthall, B. J., and Ham, R. G., 1982, Clonal growth of normal human epidermal keratinocytes in a defined medium, J. Cell Physiol. 110:219–229.PubMedCrossRefGoogle Scholar
  95. Van der Bosch, J., 1984, Tissue culture of human colon carcinomas. Therapy experiments in vitro, in: Proceedings of the First European Conference on Serum-Free Cell Culture (G. Fischer, ed.), Springer, Heidelberg, in press.Google Scholar
  96. Van der Bosch, J., 1984, Primary tissue cultures of human colon carcinomas in serum-free medium: An in vitro system for tumor analysis and therapy experiments, in: Cell Culture Methods for Molecular and Cell Biology, Volume 3 (D. Barnes, D. Sirbasku, and G. Sato, eds.), Liss, New York, in press.Google Scholar
  97. Van der Bosch, J., Masui, H., and Sato, G., 1981, Growth characteristics of primary tissue cultures from heterotransplanted human colorectal carcinomas in serum-free medium, Cancer Res. 41:611–618.PubMedGoogle Scholar
  98. Wicha, M. S., Liotta, L. A., Garbisz, S., and Kidwell, W. R., 1979, Basement membrane collagen requirements for attachment and growth of mammary epithelium, Exp. Cell Res. 124:181–190.PubMedCrossRefGoogle Scholar
  99. Wicha, M. S., Lowrie, G., Kohn, E., Baganandos, P., and Mahn, T., 1982, Extracellular matrix promotes mammary epithelial growth and differentiation in vitro, Proc. Natl. Acad. Sci. USA 79:3213–3217.PubMedCrossRefGoogle Scholar
  100. Wolfe, R. A., Wu, R., and Sato, G., 1980, EGF-induced down regulation of receptor does not occur in HeLa cells grown in defined medium, Proc. Natl. Acad. Sci. USA 77:2735–2739.PubMedCrossRefGoogle Scholar
  101. Wu, R., and Sato, G. H., 1978, Replacement of serum in cell culture by hormones: A study of hormonal regulation of cell growth and specific gene expression, J. Tox. Env. Health 4:427–448.CrossRefGoogle Scholar
  102. Yang, J., Guzman, R., Richards, J., Jintott, V., De Vault, M. R., Wellings, S. R., and Nandi, S., 1980a, Epithelial cells embedded in collagen gels, J. Natl. Cancer Inst. 65:337–341.PubMedGoogle Scholar
  103. Yang, J., Richards, J., Guzman, R., Imagawa, W., and Nandi, S., 1980b, Sustained growth in primary culture of normal mammary epithelial cells imbedded in collagen gels, Proc. Natl. Acad. Sci. USA 77:2088–2092.PubMedCrossRefGoogle Scholar
  104. Yang, J., Larson, L., Flynn, D., Elias, J., and Nandi, S., 1982, Serum-free primary culture of human normal mammary epithelial cells in collagen gel matrix, Cell Biol. Int. Rep. 6:969–975.PubMedCrossRefGoogle Scholar
  105. Yasumura, Y., Tashjian, A. H., Jr., and Sato, G., 1966, Establishment of four functional clonal strains of animal cells in culture, Science 154:1186–1189.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • David Barnes
    • 1
  1. 1.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations