Advertisement

Inducers of Dome Formation in Epithelial Cell Cultures including Agents That Cause Differentiation

  • Julia E. Lever

Abstract

Epithelia are cell sheets that line body cavities such as the lumina of the intestine, kidney tubules, and salivary glands. The differentiated phenotype of epithelia involves structural and functional specializations of the plasma membrane which enable these cells to transport ions and fluids across the cell layer. The plasma membrane of this cell type is polarized into distinct apical and basolateral regions which differ functionally, morphologically, and biochemically. Occluding junctions form between adjacent cells at the apical/basolateral boundary and can regulate the passage of ions across the cell layer. In addition, occluding junctions have been proposed to maintain cell polarity by serving as a barrier to lateral diffusion within the membrane of intrinsic proteins from basolateral and apical domains. The Na+/K+ ATPase of epithelia is restricted to the basolateral surface. Na+ pump polarity is believed to create the driving force for vectorial transport of Na+ across the cell layer, setting up an osmotic gradient which drives an accompanying net water flux in the basolateral direction.

Keywords

Mammary Epithelial Cell MDCK Cell Erythroid Differentiation Kidney Epithelial Cell Epithelial Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaza, N. A., Leighton, J., and Schultz, S. G., 1974, Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney. I. Light microscopic observations of monolayer growth, In Vitro 10:172–183.CrossRefGoogle Scholar
  2. Amsler, K., and Cook, J. S., 1982, Development of Na+-dependent hexose transport in a cultured line of procine kidney cells, Am. J. Physiol. 242:C94–C101.PubMedGoogle Scholar
  3. Beck, J. C., and Sacktor, B., 1978, The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles, J. Biol. Chem. 253:5531–5535.PubMedGoogle Scholar
  4. Bernstein, A., Hunt, D. M., Crichley, V., and Mak, T. W., 1976, Induction by ouabain of hemoglobin synthesis in cultured Friend erythroleukemic cells, Cell 9:375.PubMedCrossRefGoogle Scholar
  5. Bissell, M. J., 1981, The differentiated state of normal and malignant cells or how to define a normal cell in culture, Int. Rev. Cytol. 70:27–100.PubMedCrossRefGoogle Scholar
  6. Boffa, L. C., Vidali, G., Manor, R. S., and Allfrey, V. G., 1978, Suppression of histone deacetylation in vivo and in vitro by sodium butyrate, J. Biol. Chem. 253:3364–3366.PubMedGoogle Scholar
  7. Cereijido, M., Rotunno, C. A., Robbins, E. S., and Sabatini, D. D., 1978, Polarized epithelial membranes produced in vitro, in: Membrane Transport Processes (J. F. Hoffman, ed.), Raven Press, New York, p. 433.Google Scholar
  8. Cereijido, M., Stefani, E., and Palomo, A. M., 1980, Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity, J. Membr. Biol. 53:19–32.PubMedCrossRefGoogle Scholar
  9. Cereijido, M., Meza, I., and Martinez-Palomo, A., 1981a, Occluding junctions in cultured epithelial monolayers, Am. J. Physiol. 240:C96–C102.PubMedGoogle Scholar
  10. Cereijido, M., Ehrenfeld, J., Fernandez-Castelo, S., and Meza I., 1981b, Fluxes, junctions and blisters in cultured monolayers of epitheliod cells (MDCK), Ann. N.Y. Acad. Sci. 372:422–441.PubMedCrossRefGoogle Scholar
  11. Chambard, M., Gabrion, J., and Mauchamp, J., 1981, Influence of collagen gel on the orientation of epithelial cell polarity: Follicle formation from isolated thyroid cells and from preformed monolayers, J. Cell Biol. 91:157–166.PubMedCrossRefGoogle Scholar
  12. Claud, P., 1978, Morphological factors influencing transepithelial permeability: A model for the resistance of the zonula occludentes, J. Membrane Biol. 39:219–232.CrossRefGoogle Scholar
  13. Claude, P., and Goodenough, D. A., 1973, Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia, J. Cell Biol. 58:390.PubMedCrossRefGoogle Scholar
  14. Das, N. K., Hosick, H. L., and Nandi, S., 1974, Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium, J. Natl. Cancer Inst. 52:849–855.PubMedGoogle Scholar
  15. Dragsten, P. R., Blumenthal, R., and Handler, J. S., 1981, Membrane asymmetry in epithelia: Is the tight junction a barrier to diffusion in the plasma membrane? Nature 294:718–722.PubMedCrossRefGoogle Scholar
  16. Dulbecco, R., Bologna, M., and Unger, M., 1980, Control of differentiation of a mammary cell line by lipids, Proc. Natl Acad. Sci. USA 77:1551–1555.PubMedCrossRefGoogle Scholar
  17. Emerman, J. T., Enami, J., Pitelka, D. R., and Nandi, S., 1977, Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes, Proc. Natl. Acad. Sci. USA 74:4466–4470.PubMedCrossRefGoogle Scholar
  18. Emerman, J. T., Burwen, S. J., and Pitelka, D. R., 1979, Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture, Tissue Cell. 11:109–119.PubMedCrossRefGoogle Scholar
  19. Greenberg, G., and Hay, E. D., 1982, Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells, J. Cell Biol. 95:333–339.CrossRefGoogle Scholar
  20. Herskovits, T. T., Behrens, C. F., Suita, P. B., and Pandolfelli, E. R., 1977, Solvent denaturation of globular proteins. Unfolding by the monoalkyl and dialkyl-substituted formamides and ureas, Biochim. Biophys. Acta 490:192–199.PubMedGoogle Scholar
  21. Herzinger, D. A., Easton, T. G., and Ojakian, G. K., 1982, The MDCK cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93:269–277.CrossRefGoogle Scholar
  22. Hull, R. N., Cherry, W. R., and Weaver, G. W., 1976, The origin and characteristics of a pig kidney cell strain LLC—PK1 In Vitro 12:670–677.PubMedCrossRefGoogle Scholar
  23. Kennedy, B. G. and Lever, J. E., 1984, Regulation of Na+, K+, ATPase activity in MDCK kidney epithelial cell cultures: Role of growth state, cyclic AMP and chemical inducers of dome formation and differentiation, J. Cell Physiol., in press.Google Scholar
  24. Korn, E. D., 1976, Introductory workshop: Membranes and their association with contractile proteins, in: Cell Motility, Volume 3, Cold Spring Harbor Conferences on Cell Proliferation (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Press, New York, pp. 623–629.Google Scholar
  25. Lamb, J. F., Ogden, P., and Simmons, N. L., 1981, Autoradiographic localization of [3H]ouabain bound to cultured epithelial cell monolayers of MDCK cells, Biochim. Biophys. Acta 644:333–340.PubMedCrossRefGoogle Scholar
  26. Leder, A., and Leder, P., 1975, Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells, Cell 5:319–322.PubMedCrossRefGoogle Scholar
  27. Lee, L. S., and Weinstein, I. B., 1978, Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors, Science 202:313–315.PubMedCrossRefGoogle Scholar
  28. Leighton, J., Brada, Z., Estes, L. W., and Justh, G., Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney, Science 163:472–473.Google Scholar
  29. Levenson, R., Housman, D., and Cantley, L., 1980, Amiloride inhibits murine erythroleukemia cell differentiation: Evidence for a Ca2+ requirement for commitment, Proc. Natl. Acad. Sci. USA 77:5948–5952.PubMedCrossRefGoogle Scholar
  30. Lever, J. E., 1979a, Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK), Proc. Natl. Acad. Sci. USA 76:1323–1327.PubMedCrossRefGoogle Scholar
  31. Lever, J. E., 1979b, Cyclic AMP and inducers of mammalian cell differentiation stimulate dome formation in mammary and renal epithelial cell cultures, in: Hormones and Cell Culture, Volume 6 (G. Sato and R. Ross, eds.), Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Press, New York, p. 727.Google Scholar
  32. Lever, J. E., 1979c, Regulation of dome formation in differentiated epithelial cell cultures, J. Supramol. Struct. 12:259–272.PubMedCrossRefGoogle Scholar
  33. Lever, J. E., 1981, Regulation of dome formation in kidney epithelial cell cultures, Ann. N.Y. Acad. Sci. 372:371–383.PubMedCrossRefGoogle Scholar
  34. Lever, J. E., 1982a, Cell differentiation and dome formation in polarized epithelial cell monolayers, in: Cell Growth in Hormonally Defined Media, Volume 9 (G. Sato, A. B. Pardee, and D. Sirbasku, eds.), Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Press, New York, p. 541.Google Scholar
  35. Lever, J. E., 1982b, Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line: Sodium electrochemical potential-mediated active sugar transport, J. Biol. Chem. 257:8680–8686.PubMedGoogle Scholar
  36. Lever, J. E., 1982c, Transepithelial ion transport and differentiation in epithelial cell cultures, in: Ions, Cell Proliferation and Cancer (A. L. Boynton, W. L. McKeehan, and J. F. Whitfield, eds.), Academic Press, New York, pp. 187–203.Google Scholar
  37. Lever, J. E., and Sari, C. E., 1983, Effect of tunicamycin on polarized membrane functions of an established kidney epithelial cell line, Biochim. Biophys. Acta, 762:265–271.PubMedCrossRefGoogle Scholar
  38. Lyman, G. H., Preisler, H. D., and Papahadjopoulos, D., 1976, Membrane action of DMSO and other chemical inducers of Friend leukaemic cell differentiation, Nature 262:360–363.CrossRefGoogle Scholar
  39. Mager, D., and Bernstein, A., 1978, Early transport changes during erythroid differentiation of Friend leukemic cells, J. Cell Physiol. 94:275–286.PubMedCrossRefGoogle Scholar
  40. Marks, P. A., and Rifkind, R. A., 1978, Erythroleukemic differentiation, Ann. Rev. Biochem. 47:419–448.PubMedCrossRefGoogle Scholar
  41. Means, A. R., and Dedman, J. R., 1980, Calmodulin—an intracellular calcium receptor, Nature 285:73–77.PubMedCrossRefGoogle Scholar
  42. Meiss, H. K., Green, R. F., and Rodriguez-Boulan, E. J., 1982, Lectin-resistant mutants of polarized epithelial cells, Mol. Cell. Biol. 2:1287–1294.PubMedGoogle Scholar
  43. Meza, I., Ibarra, G., Sabanero, M., Martinez—Palomo, A., and Cereijido, M., 1980, Occluding junctions and cytoskeletal components in a cultured transporting epithelium, J. Cell Biol. 87:746–754.PubMedCrossRefGoogle Scholar
  44. Mills, J. W., MacKnight, A. D. C., Dayer, J. M., and Ausiello, D. A. 1979, Localization of 3H-ouabain-sensitive Na+ pump sites in cultured pig kidney cells, Am. J. Physiol. 236:C157–C162.PubMedGoogle Scholar
  45. Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.PubMedCrossRefGoogle Scholar
  46. Mullin, J. M., Diamond, L., and Kleinzeller, A., 1980a, Effects of ouabain and ortho-vanadate on transport-related properties of the LLC—PK1 renal epithelial cell line, J. Cell. Physiol. 105:1–6.PubMedCrossRefGoogle Scholar
  47. Mullin, J. M., Weibel, J., Diamond, L., and Kleinzeller, A. J., 1980b, Sugar transport in the LLC—PK1 renal epithelial cell line: Similarity to mammalian kidney and the influence of cell density, J. Cell. Physiol. 104:375–389.PubMedCrossRefGoogle Scholar
  48. Ojakian, G. K., 1981, Tumor promoter-induced changes in the permeability of epithelial cell tight junctions, Cell 23:95–103.PubMedCrossRefGoogle Scholar
  49. Pickett, P. B., Pitelka, D. R., Hamamoto, S. T., and Misfeldt, D. S., 1975, Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells, J. Cell Biol. 66:316–332.PubMedCrossRefGoogle Scholar
  50. Rabito, C. A., 1981, Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1), Biochim. Biophys. Acta 649:286–290.PubMedCrossRefGoogle Scholar
  51. Rabito, C. A., and Karish, M. V., 1982, Polarized amino acid transport by an epithelial cell line of renal origin (LLC—PK1): The basolateral systems, J. Biol. Chem. 257:6802–6808.PubMedGoogle Scholar
  52. Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1978, Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney, J. Membr. Biol. 43:351–365.PubMedCrossRefGoogle Scholar
  53. Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1980, Effect of cell-substratum interaction on hemicyst formation by MDCK cells, In Vitro 16:461.PubMedCrossRefGoogle Scholar
  54. Rasmussen, H., Goodman, D. B. P., and Tenenhouse, A., 1972, The role of cyclic AMP and calcium in cell activation, CRC Crit. Rev. Biochem. 1:95–148.PubMedCrossRefGoogle Scholar
  55. Reid, L., Morrow, B., Jubinsky, P., Schwartz, E., and Gatmaitan, Z., 1981, Regulation of growth and differentiation of epithelial cells by hormones, growth factors, and substrates of extracellular matrix, Ann. N.Y. Acad. Sci. 372:354–370.PubMedCrossRefGoogle Scholar
  56. Reuben, R. C., Khanna, P. L., Gazitt, Y., Breslow, R., Rifkind, R., and Marks, P. A., 1978, Inducers of erythroleukemic differentiation. Relationship of structure to activity among planarpolar compounds, J. Biol. Chem. 253:4214–4218.PubMedGoogle Scholar
  57. Rifkind, R. A., Fibach, E., Reuben, R. C., Gazitt, Y., Yamasaki, H., Weinstein, I. B., Nudel, V., Shumida, I., Terada, M., and Marks, P. A., 1978, Erythroleukemia cells: Commitment to differentiate and the role of the cell surface, in: Differentiation of Normal and Neoplastic Hematopoietic Cells, Volume 5 (B. Clarkson, P. A. Marks, and J. E. Till, eds.), Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Press, New York, p. 209.Google Scholar
  58. Rodriguez-Boulan, E., and Sabatini, D. D., 1978, Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity, Proc. Natl. Acad. Sci. USA 75:5071–5075.PubMedCrossRefGoogle Scholar
  59. Roth, M. G., Fitzpatrick, J. P., and Compans, R. W., 1979, Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of a requirement for glycosylation of viral glycoproteins, Proc. Natl. Acad. Sci. USA 75:6430–6434.CrossRefGoogle Scholar
  60. Sanders, E. J., and Dickau, J. E., 1981, Morphological differentiation of an embryonic epithelium in culture, Cell Tissue Res. 220:539–548.PubMedCrossRefGoogle Scholar
  61. Sanders, M. J., and Misfeldt, D. S., 1981, Transepithelial transport in cell culture: Different stoichiometries of Na+: phlorizin binding and Na+:D-glucose cotransport, J. Cell Biol. 91:424 (abstract).CrossRefGoogle Scholar
  62. Scher, W., Tsuei, D., Sassa, S., Price, P., Gabelman, N., and Friend, C., 1978, Inhibition of dimethylsulfoxide Friend cell erythrodifferentiation by hydrocortisone and other steroids, Proc. Natl. Acad. Sci. USA 75:3851–3855.PubMedCrossRefGoogle Scholar
  63. Sheffery, M., Rifkind, R. A., and Marks, P. A., 1982, Murine erythroleukemia cell differentiation: DNAse I hypersensitivity and DNA methylation near the globin genes, Proc. Natl. Acad. Sci. USA 79:1180–1184.PubMedCrossRefGoogle Scholar
  64. Simmons, J. L., Fishman, P. H., Freese, E., and Brady, R. O., 1975, Morphological alterations and ganglioside sialytransferase activity induced by small fatty acids in HeLa cells, J. Cell Biol. 66:414–424.PubMedCrossRefGoogle Scholar
  65. Sirica, A. E., Richards, W., Tsukada, Y., Sattler, C. A., and Pitot, H. C., 1979, Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes, Proc. Natl. Acad. Sci. USA 76:283–287.PubMedCrossRefGoogle Scholar
  66. Smith, R. L., Macara, I. G., Levenson, R., Housman, D., and Cantley, L., 1982, Evidence that a Na+ /Ca2+ antiport system regulates murine erythroleukemia cell differentiation, J. Biol. Chem. 257:773–780.PubMedGoogle Scholar
  67. Storrie, B., Puck, T. T., and Wigner, L., 1978, The role of butyrate in the reverse transformation reaction in mammalian cells, J. Cell Physiol. 94:69–76.PubMedCrossRefGoogle Scholar
  68. Sweadner, K. J., and Goldin, S. M., 1980, Active transport of sodium and potassium ions, New Engl. J. Med. 302:777–783.PubMedCrossRefGoogle Scholar
  69. Taub, M., and Saier, M. H., 1979, Regulation of 22Na transport by calcium in an established kidney epithelial cell line, J. Biol. Chem. 254:11440–11444.PubMedGoogle Scholar
  70. Taub, M., Chuman, L., Saier, M. H., and Sato, G., 1979, Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium, Proc. Natl. Acad. Sci. USA 76:3338–3342.PubMedCrossRefGoogle Scholar
  71. Terada, M., Epner, E., Nudel, U., Salmon, J., Fibach, E., Rifkind, R. A., and Marks, P. A., 1978, Induction of murine erythroleukemia differentiation by actinomycin D, Proc. Natl. Acad. Sci. USA 75:2795–2799.PubMedCrossRefGoogle Scholar
  72. Thomas, S. R., Schultz, S. G., and Lever, J. E., 1982, Stimulation of dome formation in MDCK kidney epithelial cell cultures by inducers of differentiation: Dissociation from effects on transepithelial resistance and cyclic AMP levels, J. Cell Physiol. 113:427–432.PubMedCrossRefGoogle Scholar
  73. U, H. S., Saier, M. H., Jr., and Ellisman, M. H., 1979, Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia, Exp. Cell Res. 122:384–392.PubMedCrossRefGoogle Scholar
  74. U, H. S., Saier, M. H., Jr., and Ellisman, M.H., 1980, Tight junction formation in the establishment of intramembranous particle polarity in aggregating MDCK cells, Exp. Cell Res. 128: 223–237.PubMedCrossRefGoogle Scholar
  75. Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–404.PubMedCrossRefGoogle Scholar
  76. Valentich, J. D., 1982, Basal lamina assembly by the dog kidney epithelial cell line MDCK, in: Growth of Cells in Hormonally-Defined Media, Volume 9 (G. Sato, A. B. Pardee, and D. Sirbasku, eds.), Cold Spring Harbor Press, New York, pp. 567–579.Google Scholar
  77. Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK, J. Cell. Physiol. 100:291–304.PubMedCrossRefGoogle Scholar
  78. Weinstein, I. B., Wigler, M., and Pietropaolo, C., 1977, The action of tumor promoting agents in cell culture, in: Origins of Human Cancer (H. H. Heath, J. D. Watson, and J. A. Wingston, eds.), Cold Spring Harbor Press, New York, pp. 751–772.Google Scholar
  79. Wicha, M. S., Lowrie, G., Kohn, E., Bagavardoss, P., and Mahn, T., 1982, Extracellular matrix promotes mammary epithelial growth and differentiation in vitro, Proc. Natl. Acad. Sci. USA 79:3213–3217.PubMedCrossRefGoogle Scholar
  80. Yang, J., Richards, J., Bowman, P., Guzman, R., Enami, J., McCormick, K. Hamamoto, S., Pitelka, D., and Nandi, S., 1979, Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels, Proc. Natl. Acad. Sci. USA 76:3401–3405.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Julia E. Lever
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe University of Texas Medical SchoolHoustonUSA

Personalised recommendations