Advertisement

Exposure to Chemical Carcinogens During Pregnancy: Consequences for Mother and Conceptus

  • Jerry M. Rice
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 176)

Abstract

The causes of the overwhelming majority of human neoplasms, including gestational choriocarcinoma, remain unknown. However, an increasing body of evidence has shown that at least some human cancers have resulted from exposure to non-infectious agents in the human environment. These agents include both ultraviolet and ionizing radiation, and diverse and in some cases as yet poorly characterized group of both organic and inorganic substances and industrial processes. The International Agency for Research on Cancer has recently concluded that at least 7 such industrial processes and 23 chemicals and groups of chemicals are causally associated with certain cancers in humans (1). A few of these agents are listed in Table 1; ironically, a significant number are used clinically as anti-neoplastic drugs. An additional 61 chemicals, groups of chemicals, or industrial processes are considered probably carcinogenic to humans by the International Agency for Research on Cancer. Hundreds more have been shown to cause tumors in experimental animals, and by inference must be considered hazardous to humans. While inorganic substances, including minerals such as asbestos and elements such as arsenic, chromium, and their salts are included in this list, the overwhelming majority of substances known to cause cancer when applied experimentally to animals and to have caused cancer in humans either as a result of industrial exposure or as a consequence of anti-tumor chemotherapy are organic compounds of low molecular weight, and it is exclusively with the latter that this overview will be concerned.

Keywords

Vinyl Chloride Chemical Carcinogen Polynuclear Aromatic Hydrocarbon Hydatidiform Mole Chemical Carcinogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Agency for Research on Cancer, “IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans,” Supplement 4, IARC, Lyon, France (1982).Google Scholar
  2. 2.
    Druckrey, H., Kruse, H., Preussmann, R., Ivankovic, S., and Landschütz, C., Cancerogene alkylierende Substanzen. III. Alkyl-halogenide, -sulfate, -sulfonate, and ringspannte Heterocyclen, Z. Krebsforsch. 74:241 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    Kleihues, P., Mende, C., and Reucher, W., Tumors of the peripheral and central nervous system induced in BD rats by prenatal application of methyl methane sulfonate, Eur. J. Cancer 8:641 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    Druckrey, H., Kruse, H., Preussmann, R., Ivankovic, S., Landschütz, C., and Gimmy, J., Cancerogene alkylierende Substanzen. IV. 1,3-Propansulton and 1,4-Butansulton, Z. Krebsforsch. 75:69 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    Jänisch, W., Schreiber, D., Warzok, R., and Schneider, J., Die transplacentare Induction von Geschwulsten des Nervensystems. Vergleichende Untersuchung der Wirksamheit von Methyl und Athylnitrosoharnstoff, Arch. Geschwulstforsch. 39: 99 (1972).PubMedGoogle Scholar
  6. 6.
    Druckrey, H., Ivankovic, S., and Preussmann, R., Teratogenic and carcinogenic effects in the offspring after single injection of ethylnitrosourea to pregnant rats, Nature 210: 1378 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    Ivankovic, S. and Druckrey, H., Transplacentare Erzeugung maligner Tumoren des Nervensystems. I. Athylnitrosoharnstoff (ANH) an BD IX-Ratten, Z. Krebsforsch. 71:320 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    Druckrey, H. and Landschütz, C., Transplacentare and neonatale Krebserzeugung durch Äthylnitrosobiuret (ÄNBU) an BD-IX Ratten, Z. Krebsforsch. 76:45 (1971).CrossRefGoogle Scholar
  9. 9.
    Koestner, A., Swenberg, J. A., and Wechsler, W., Transplacental production with ethylnitrosourea of neoplasms of the nervous system in Sprague-Dawley rats, Amer. J. Pathol. 63:37 (1971).Google Scholar
  10. 10.
    Swenberg, J. A., Koestner, A., Wechsler, W., and Denlinger, R. H., Quantitative aspects of transplacental tumor induction with ethylnitrosourea in rats, Cancer Res. 32:2656 (1972).PubMedGoogle Scholar
  11. 11.
    Diwan, B. A. and Meier, H., Strain-and age-dependent transplacental carcinogenesis by 1-ethyl-l-nitrosourea in inbred strains of mice, Cancer Res. 34:764 (1974).PubMedGoogle Scholar
  12. 12.
    Rice, J. M., Transplacental carcinogenesis in mice by 1-ethyl-l-nitrosourea, Ann. New York Acad. Sci. 163:813 (1969).CrossRefGoogle Scholar
  13. 13.
    Vesselinovitch, S. D., Koka, M., Rao, K. V. N., Mihailovich, N., and Rice, J. M., Prenatal carcinogenesis by ethylnitrosourea in mice, Cancer Res. 37:1822 (1977).PubMedGoogle Scholar
  14. 14.
    Fox, R. R., Diwan, B. A., and Meier, H., Transplacental induction of primary renal tumors in rabbits treated with 1-ethyl1-nitrosourea, J. Natl. Cancer Inst. 54:1439 (1975).PubMedGoogle Scholar
  15. 15.
    Stavrou, D. and Hanichen, T., Oncogene Wirkung von Athylnitrosoharnstoff beim Kaninchen während der pranatalen Periode, Z. Krebsforsch. 84:207 (1975).CrossRefGoogle Scholar
  16. 16.
    Stavrou, D., Dahme, E., and Schroder, B., Transplacentare neuroonkogene Wirkung von Athylnitrosoharnstoff beim Kaninchen während der fruhen Graviditätsphase, Z. Krebsforsch. 89:331 (1977).CrossRefGoogle Scholar
  17. 17.
    Rice, J. M., Palmer, A. E., London, W. T., Sly, D. L., and Williams, G. M., Transplacental effects of ethylnitrosourea in the patas monkey, in: “Tumors of Early Life in Man and Animals,” L. Severi, ed., Perugia Quadrennial International Conferences on Cancer., Perugia (1978), p. 893.Google Scholar
  18. 18.
    Osske, G., Warzok, R., and Schneider, J., Diaplazentare Tumorinduktion durch endogen gebildeten N-Athyl-N-nitrosoharnstoff bei Ratten, Arch. Geschwulstforsch. 40:244 (1972).PubMedGoogle Scholar
  19. 19.
    Fox, R. R., Diwan, B. A., and Meier, H., Transplacental carcinogenic effects of combined treatment of ethylurea and sodium nitrite in rabbits, J. Natl. Cancer Inst. 59:427 (1977).Google Scholar
  20. 20.
    Alexandrov, B. A., Blastomogenic effect of dimethylnitrosamine on pregnant rats and their offspring, Nature 218:280 (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    Pielsticker, K., Wieser, O., Mohr, U., and Wrba, H., Diaplazentar induzierte Nierentumoren bei der Ratte, Z. Krebsforsch. 69:345 (1969).Google Scholar
  22. 22.
    Diwan, B. A. and Meier, H., Transplacental carcinogenic effects of diethylnitrosamine in mice, Naturwissenschaften 63:487 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    Mohr, U., Althoff, J., and Authaler, A., Diaplacental effect of the carcinogen diethylnitrosamine in the golden hamster, Cancer Res. 26:2349 (1966).PubMedGoogle Scholar
  24. 24.
    Mohr, U., Reznik-Schuller, H., Reznik, G., and Hilf rich, J., Transplacental effects of diethylnitrosamine in Syrian hamsters as related to different days of administration during pregnancy, J. Natl. Cancer Inst. 55:681 (1975).PubMedGoogle Scholar
  25. 25.
    Bulay, O. M. and Wattenberg, L. W., Carcinogenic effects of subcutaneous administration of benzo[a]pyrene during pregnancy on the progeny, Proc. Soc. Exptl. Biol. Med. 135:84 (1970).Google Scholar
  26. 26.
    Bulay, O. M. and Wattenberg, L. W., Carcinogenic effects of polycyclic hydrocarbon carcinogen administration to mice during pregnancy on the progeny, J. Natl. Cancer Inst. 46: 397 (1971).PubMedGoogle Scholar
  27. 27.
    Tomatis, L., Turusov, V., Guibbert, D., Duperray, B., Mala-veille, C., and Pacheco, H., Transplacental carcinogenic effect of 3-methylcholanthrene in mice and its quantitation in fetal tissues, J. Natl. Cancer Inst. 47:645 (1971).PubMedGoogle Scholar
  28. 28.
    Goerttler, K. and Lohrke, H., Diaplacental carcinogenesis: initiation with the carcinogens dimethylbenzanthracene (DMBA) and urethane during fetal life and postnatal promotion with the phorbol ester TPA in a modified 2-stage Berenblum/ Mottram experiment, Virch. Arch. [Path. Anat.] 372:29 (1976).CrossRefGoogle Scholar
  29. 29.
    Goerttler, K. and Lohrke, H., Diaplacental carcinogenesis: tumor localization and tumor incidence in NMRI mice after diaplacental initiation with DMBA and urethane and postnatal promotion with the phorbol ester TPA in a modified 2-stage Berenblum/Mottram experiment, Virch. Archr. Pathol. Anat. 376:117 (1977).Google Scholar
  30. 30.
    Napalkov, N. P. and Alexandrov, V. A., Neurotropic effects of 7,12-dimethylbenz[a]anthracene in transplacental carcinogenesis, J. Natl. Cancer Inst. 52:1365 (1974).PubMedGoogle Scholar
  31. 31.
    Rice, J. M., Joshi, S. R., Shenefelt, R. E., and Wenk, M., Transplacental carcinogenic activity of 7,12-dimethylbenz[aJ -anthracene, in: “Carcinogenesis, Vol. 3, Polynuclear Aromatic Hydrocarbons,” P. W. Jones and R. I. Freudenthal, eds., Raven Press, New York (1978), p. 413.Google Scholar
  32. 32.
    Grice, H. C., Moodie, C. A., and Smith C. D., The carcinogenic potential of aflatoxin or its metabolites in rats from dams fed aflatoxin pre-and postpartum, Cancer Res. 33:262 (1973).PubMedGoogle Scholar
  33. 33.
    Spatz, M. and Laqueur, G. L., Transplacental induction of tumors in Sprague-Dawley rats with crude cycad material, J. Natl. Cancer Inst. 38:233 (1967).PubMedGoogle Scholar
  34. 34.
    Vesselinovitch, S. D., Rao, K. V. N., and Mihailovich, N., Transplacental and lactational carcinogenesis by safrole, Cancer Res. 39:4378 (1979).PubMedGoogle Scholar
  35. 35.
    Larsen, C. D., Pulmonary tumor induction by transplacental exposure to urethane, J. Natl. Cancer Inst. 8:63 (1947).Google Scholar
  36. 36.
    Ivankovic, S., Erzeugung von Malignomen bei Ratten nach transplacentarer Einwirkung von N-Isopropyl-a-2(methylhydrazino)-p-toluamid HCl, Arzneim. Forsch. 22:905 (1972).Google Scholar
  37. 37.
    Maltoni, C., Predictive value of carcinogenesis bioassays, Ann. New York Acad. Sci. 271:431 (1976).CrossRefGoogle Scholar
  38. 38.
    Kleihues, P., Developmental carcinogenicity, in: “Developmental Toxicology,” K. Snell, ed., Praeger, New York (1981), p. 211.Google Scholar
  39. 39.
    Rice, J. M., Effects of prenatal exposure to chemical carcinogens and methods for their detection, in: “Developmental Toxicology,” C. A. Kimmel and J. Buelke-Sam, eds., Raven Press, New York (1981), p. 191.Google Scholar
  40. 40.
    Rice, J. M., ed., “Perinatal Carcinogenesis,” NCI Monograph 51, United States Government Printing Office, Washington, D.C. (1979).Google Scholar
  41. 41.
    Severi, L., ed., “Tumors of Early Life in Man and Animals,” Perugia Quadrennial International Conferences on Cancer, Perugia, Italy (1978).Google Scholar
  42. 42.
    Tomatis, L. and Mohr, U., eds., “Transplacental Carcinogenesis,” International Agency for Research on Cancer, Lyon, France (1973).Google Scholar
  43. 43.
    Miller, E. C. and Miller, J. A., The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanisms of action in carcinogenesis, in: “Chemical Carcinogens, ACS Monograph 173,” C. E. Searle, ed., American Chemical Society, Washington, D. C. (1976), p. 737.Google Scholar
  44. 44.
    Sims, P., Grover, P. L., Swaisland, A., Pal, K., and Hewer, A., Metabolic activation of benzo[a] pyrene proceeds by a diolepoxide, Nature 252:326 (1974).PubMedCrossRefGoogle Scholar
  45. 45.
    Langenbach, R., Newnow, S., and Rice, J. M., eds., “Organ and Species Specificity in Chemical Carcinogenesis,” Plenum Press, New York (1983).Google Scholar
  46. 46.
    Mochizuki, M., Anjo, T., Takeda, K., Suzuki, E., Sekiguchi, N., Huang, G. F., and Okada, M., Chemistry and mutagenicity of a-hydroxy nitrosamines, in: “N-Nitroso Compounds: Occurrence and Biological Effects,” H. Bartsch, M. Castegnaro, J. K. Oneill, and M. Okada, eds., IARC Scientific Publications No. 41, International Agency for Research on Cancer, Lyon, France (1982), p. 553.Google Scholar
  47. 47.
    Magee, P. N., Montesano, R., and Preussmann, R., N-Nitroso compounds and related carcinogens, in: “Chemical Carcinogens, ACS Monograph 173,” C. E. Searle, ed., American Chemical Society, Washington, D. C. (1976), p. 737.Google Scholar
  48. 48.
    Salmon, A. G., Cytochrome P-450 and the metabolism of vinyl chloride, Cancer Lett. 2:109 (1976).PubMedCrossRefGoogle Scholar
  49. 49.
    Zajdela, F., Croisy, A., Barbin, A., Malaveille, C., Tomatis, L., and Bartsch, H., Carcinogenicity of chloroethylene oxide, an ultimate reactive metabolite of vinyl chloride, and bis (chloromethyl)ether after subcutaneous administration and in initiation-promotion experiments in mice, Cancer Res. 40: 352 (1980).PubMedGoogle Scholar
  50. 50.
    Schoental, R., Carcinogens in plants and microorganisms, in: “Chemical Carcinogens, ACS Monograph 173,” C. E. Searle, ed., American Chemical Society, Washington, D. C. (1976), p. 626.Google Scholar
  51. 51.
    Levitt, R. C., Pelkonen, O., Okey, A. B., and Nebert, D. W., Genetic differences in metabolism of polycyclic aromatic carcinogens and aromatic amines by mouse liver microsomes. Detection by DNA binding of metabolites and by mutagenicity in histidine-dependent Salmonella typhimurium in vitro, J. Natl. Cancer Inst. 62:947 (1979).PubMedGoogle Scholar
  52. 52.
    Wattenberg, L. W. and Leong, J. L., Inhibition of the carcinogenic action of benzora]pyrene by flavones, Cancer Res. 30:1922 (1970).PubMedGoogle Scholar
  53. 53.
    Yuspa, S. H., Hennings, H., Lichti, U., and Kulesz-Martin, M., Organ specificity and tumor promotion, in: “Organ and Species Specificity in Chemical Carcinogenesis,” R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York (1983), p. 157.CrossRefGoogle Scholar
  54. 54.
    Peraino, C., Fry, R. J. M., and Staffeldt, E., Reduction and enhancement by phenobarbital of hepatocarcinogenesis induced in the rat by 2-acetylaminofluorene, Cancer Res. 31:1506(1971).Google Scholar
  55. 55.
    Stevens, F. J. and Peraino, C., Liver as a model system for analyzing mechanisms of tumor initiation and promotion, in: “Organ and Species Specificity in Chemical Carcinogenesis,” R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York (1983), p. 231.CrossRefGoogle Scholar
  56. 56.
    Cohen, S. M., Promotion of urinary bladder carcinogenesis, in: “Organ and Species Specificity in Chemical Carcinogenesis,” R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York (1983), p. 253.CrossRefGoogle Scholar
  57. 57.
    Reiners, J., Jr., Davidson, K., Nelson, K., Mamrack, M., and Slaga, T., Skin tumor promotion: a comparative study of several stocks and strains of mice, in: “Organ and Species Specificity in Chemical Carcinogenesis,” R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York (1983), p. 173.CrossRefGoogle Scholar
  58. 58.
    Boutwell, R. K., Some biological aspects of skin carcinogenesis, Progr. Exptl. Tumor Res. 4:207 (1964).Google Scholar
  59. 59.
    Rice, J. M., Palmer, A. E., Ward, J. M., and Cicmanec, J. L., Hepatocellular neoplasia in nonhuman primates after transplacental diethylnitrosamine and postnatal phenobarbital, Fed. Proc. 42:1022 (1983).Google Scholar
  60. 60.
    Williams, G. M., Epigenetic effects of liver tumor promoters and implications for health effects, Environmental Health Persp. 50:177 (1983).Google Scholar
  61. 61.
    Ivankovic, S., Erzeugung von Genitalkrebs bei trächtigen Ratten, Arzneimitted Forsch. 19:1040 (1969).Google Scholar
  62. 62.
    Jurgelski, W., Jr., Hudson, P., and Falk, H. L., Tissue differentiation and susceptibility to embryonal tumor induction by ethylnitrosourea in the opossum, Natl. Cancer Inst. Monogr. 51:123 (1979).PubMedGoogle Scholar
  63. 63.
    Klinger, W., Muller, D., Kleeberg, U., and Barth, A., Peri-and postnatal development of phase I reactions, in: “Developmental Pharmacology,” C. A. Kimmel and J. Buelke-Sam, eds, Raven Press, New York (1981), p. 83.Google Scholar
  64. 64.
    Herbst, A. L., Scully, R. E., and Robboy, S. J., Prenatal diethylstilbestrol exposure and human genital tract abnormalities, Nat]. Cancer Inst. Monogr. 51:25 (1979).Google Scholar
  65. 65.
    Metzler, M. and McLachlan, J. H., Peroxidase-mediated oxidation, a possible pathway for metabolic activation of diethylstilbestrol, Biochem. Biophys. Res. Commun. 85:874 (1978).PubMedCrossRefGoogle Scholar
  66. 66.
    Rice, J. M., London, W. T., Palmer, A. E., Sly, D. L., and Williams, G. M., Direct and transplacental carcinogenesis by ethylnitrosourea in the patas monkey (Erythrocebus patas), Proc. Amer. Assoc. Cancer Res. 18:53 (1977).Google Scholar
  67. 67.
    Rice, J. M., London, W. T., and Sly, D. L., Transplacental carcinogenesis by ethylnitrosourea in the rhesus monkey (Macaca mulatta), Proc. Amer. Assoc. Cancer Res. 22:74 (1981).Google Scholar
  68. 68.
    Jänisch, W., Schreiber, D., Warzok, R., and Scholtze, P., Versuche mit den Kanzerogenen Methyl-und Athylnitrosoharnstoff bei Macaca mulatta, Arch. Geschwulstforsch. 47:123 (1979).Google Scholar
  69. 69.
    Rice, J. M., Palmer, A. E., London, W. T., Sly, D. L., and Williams, G. M., Induction of gestational choriocarcinoma in patas monkeys by ethylnitrosourea given during pregnancy, Proc. Amer. Assoc. Cancer Res. 21:84 (1980).Google Scholar
  70. 70.
    Rice, J. M., Williams, G. M., Palmer, A. E., London, W. T., and Sly, D. L., Pathology of gestational choriocarcinoma induced in patas monkeys by ethylnitrosourea given during pregnancy, Placenta (Suppl. 3):223 (1981).PubMedGoogle Scholar
  71. 71.
    Bur, G. I., Hertig, A. T., McKay, D. C., and Adams, E. C., Histochemical aspects of hydatidiform mole and choriocarcinoma, Obstet. Gynecol. 19:156 (1962).PubMedGoogle Scholar
  72. 72.
    Panigel, M., Structure et ultrastructure comparées de la membrane placentaire chez certains primates non humains, Bulletin de l’Association des Anatomistes 145:319 (1969).Google Scholar
  73. 73.
    Legrand, C. and Panigel, M., L’ultrastructure des cellules intravasculaires dan les artères spiralées utéroplacentaires au debut de la gestation chez le Babouin, Papio cynocephaZus, Comptes Rendus de l’Academie des Sciences de Paris, Série D 272:429 (1971).Google Scholar
  74. 74.
    Hodgen, G. D., Tullner, W. W., Vaitukaitis, J. L., Ward, D. N., and Ross, G. T., Specific radioimmunoassay of chorionic gonadotropin during implantation in rhesus monkeys, J. Clin. Endocrinol. Metab. 39:457 (1974).PubMedCrossRefGoogle Scholar
  75. 75.
    Hodgen, G. D., Niemann, W. H., and Tullner, W. W., Duration of chorionic gonadotropin production by the placenta of the rhesus monkey, Endocrinology 96:789 (1975).PubMedCrossRefGoogle Scholar
  76. 76.
    Marin-Padilla, M. and Benirschke, K., Thalidomide-induced alterations in the blastocyst and placenta of the armadillo, Dasypus novemcinctus mexicanus, including a choriocarcinoma, Amer. J. Pathol. 43:999 (1963).Google Scholar
  77. 77.
    Stein-Werblowsky, R., Induction of chorionepitheliomatous tumors in the rat, Nature 186:980 (1960).PubMedCrossRefGoogle Scholar
  78. 78.
    Shintani, S., Glass, L. E., and Page, E. W., Studies of induced malignant tumours of placental and uterine origin in the rat. II. Induced tumors and their pathogenesis with special references to choriocarcinoma, Amer. J. Obstet. Gynecol. 95: 550 (1966).Google Scholar
  79. 79.
    Kajii, T., and Ohama, K., Androgenetic origin of hydatidiform mole, Nature 268:633 (1977).PubMedCrossRefGoogle Scholar
  80. 80.
    Wake, N., Takagi, N., and Sasaki, M., Androgenesis as a cause of hydatidiform mole, J. Natl. Cancer Inst. 60:51 (1978).PubMedGoogle Scholar
  81. 81.
    Lawler, S. D., Genetic studies on hydatidiform moles, in: R. A. Pattillo and R. O. Hussa, eds., “Human Trophoblast Neoplasms,” Plenum Press, New York (1984), p. 147.Google Scholar
  82. 82.
    Wake, N., Tanaka, K., Chapman, V., Matsui, S., and Sandberg, A. A., Chromosomes and cellular origin of choriocarcinoma, Cancer Res. 41:3137 (1981).PubMedGoogle Scholar
  83. 83.
    Evans, I. A., The bracken carcinogen, in: “Chemical Carcinogens, ACS Monograph 173,” C. E. Searle, ed., American Chemical Society, Washington, D. C. (1976), p. 690.Google Scholar
  84. 84.
    Krishnamachari, K. A. V. R., Bhat, R. V., Nagarajan, V., and Tilak, T. B. G., Hepatitis due to aflatoxicosis. An outbreak in western India, Lancet i:1061 (1975).CrossRefGoogle Scholar
  85. 85.
    Ngindu, A., Kenya, P. R., Ocheng, D. M., Omondi, T. N., Ngare, W., Gatei, D., Johnson, B. K., Ngira, J. A., Nandwa, H., Jansen, A. J., Kaviti, J. N., and arap Siongok, T., Outbreak of acute hepatitis caused by aflatoxin poisoning in Kenya, Lancet i:1346 (1982).CrossRefGoogle Scholar
  86. 86.
    Croy, R. G., Essigmann, J. M., and Wogan, G. N., Aflatoxin B1: correlations of patterns of metabolism and DNA modification with biological effects, in: “Organ and Species Specificity in Chemical Carcinogenesis,” R. Langenbach, S. Nesnow, and J. M. Rice, eds., Plenum Press, New York (1983), p. 49.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jerry M. Rice
    • 1
  1. 1.Laboratory of Comparative Carcinogenesis National Cancer InstituteFrederick Cancer Research FacilityFrederickUSA

Personalised recommendations