The Surface Charge of Cells Producing hCG

  • Lawrence L. Hause
  • Norio Tosaka
  • R. A. Pattillo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 176)


The cell surface is the interface between the cell and its environment. The surface acts to regulate cell function through antigens, receptors, cell-cell interaction, and other factors. One important and measurable property of the cell surface is charge. Surface charge results from the accumulation of exposed charge groups at the external surface of the cell membrane, and is peripheral to the region of transmembrane ion separation which defines transmembrane potential. The surface of normal human cells is negatively charged due to the presence of acidic oligosaccharide groups at the terminal regions of membrane glycoproteins (1).


Surface Charge Electrophoretic Mobility Paroxysmal Nocturnal Hemoglobinuria BeWo Cell Neuraminic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tenforde, T., Microelectrophoretic studies on the surface chemistry of erythrocytes, Adv. Biol. Med. Physics 13: 43 (1971).Google Scholar
  2. 2.
    Seaman, G. V. F., Electrokinetic behavior of red cells, in: “The Red Cell,” Vol. II, D. Surgenor, ed., Academic Press, New York (1975), p. 1135.Google Scholar
  3. 3.
    Pretlow, T. G. and Pretlow, T. P., International Review of Cytology 61: 85 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    Ambrose, E. J., ed., “Cell Electrophoresis,” Churchill Ltd., London (1965).Google Scholar
  5. 5.
    Vassar, P. S., Hards, J. M., and Seaman, G. V. F., Surface properties of human lymphocytes, Biochim. Biophys. Acta 291: 107 (1973).Google Scholar
  6. 6.
    Seaman, G. V. F. and Uhlenbruck, G., The surface structure of erythrocytes from some animal sources, Arch. Biochem. Biophys. 100: 493 (1963).Google Scholar
  7. 7.
    Chollet, P. H., Chassagne, C., Thierry, C., Sauvezie, B., Serrou, B., and Plagne, R., Isolation and electrophoretic mobility of three lymphoid populations in normal human blood, Eur. J. Cancer 13: 333 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    Kapken, J. H. and Uzgiris, Identification of T and B cell sub-populations in human peripheral blood: electrophoretic mobility distributions associated with surface marker characteristics, J. Immunol. 117: 115 (1976).Google Scholar
  9. 9.
    Wiig, J. N., Electrophoresis of lymphoid cells. A study of Bruton type of agammaglobulinaemia, thymic dysplasia, chronic lymphatic leukaemia and of normal human thymocytes, Clin. Exptl. Immunol. 19: 159 (1975).Google Scholar
  10. 10.
    Hause, L. L., Koethe, S. M., Rothwell, D. J., and Straumfjord, Jr., Relations between surface charge and in vitro lysis of red blood cells in paroxysmal nocturnal hemoglobinuria, Scand. J. Haematol. 16: 241 (1978).Google Scholar
  11. 11.
    Field, E. J., Caspary, E. A., and Smith, K. S., Macrophage electrophoretic mobility (MEM) test in cancer: a critical evaluation, Brit. J. Cancer 28: 208 (1973).Google Scholar
  12. 12.
    Hoffmann, W., Werner, W., Steiner, R., and Kaufmann, R., Cell electrophoresis for diagnostic purposes. I. Diagnostic value of the electrophoretic mobility test (EMT) for the detection of gynaecological malignancies, Brit. J. Cancer 43:Google Scholar
  13. 13.
    Ruhenstroth-Bauer, G., in: “Cell Electrophoresis,” E. J. Ambrose, ed., Churchill, London, (1965), p. 66.Google Scholar
  14. 14.
    Zeller, K. and Hannig, K., Free-flow electrophoretic separation of lymphocytes. Evidence for specific organ distributions of lymphoid cells, Hoppe-Seyler’s Z. Physiol. Chem. Bd. 352: 1162 (1971).Google Scholar
  15. 15.
    Gottschalk, A., Neuraminidase: the specific enzyme of influenza virus and Vibrio cholerae, Biochim. Biophys. Acta 23: 645 (1957).Google Scholar
  16. 16.
    Eylar, E. H., Madoff, M. A., Brody, 0. V., and Oncley, J. L., The contribution of sialic acid to the surface charge of the erythrocyte, J. Biol. Chem. 237: 1992 (1962).PubMedGoogle Scholar
  17. Lillie, R. S., On differences in the direction of the electrical connection of certain free cells and nuclei, Amer. J. Physiol. viii: 273 (1902).Google Scholar
  18. 18.
    Valet, G., Bamberger, S., Hofmann, H., Schindler, R., and Ruhenstroth-Bauer, G., Flow cytometry as a new method for the measurement of electrophoretic mobility of erythrocytes using membrane charge staining by fluoresceinated polycations, J. Histochem. Cytochem. 27: 342 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    Hause, L. L., Pattillo, R. A., Sauces, A., Jr., and Mattingly, R. F., Cell surface coatings and membrane potentials of malignant and nonmalignant cells, Science 169: 601 (1970).PubMedCrossRefGoogle Scholar
  20. 20.
    Currie, G. A. and Bagshawe, K. D., The masking of antigens on trophoblast and cancer cells, Lancet 1: 708 (1967).PubMedCrossRefGoogle Scholar
  21. 21.
    Vassar, P. S., The electric charge density of human tumor cell surfaces, Lab. Invest. 12: 1072 (1963).Google Scholar
  22. 22.
    Beckmann, A., Jenssen, H. L., Kalkoff, W., and Redmann, K., Transmembrane potential of white cells is found along with some surface potential, Separatum Experientia 26: 186 (1970).CrossRefGoogle Scholar
  23. 23.
    Pattillo, R. A. and Gey, G. 0., The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro, Cancer Res. 28: 1231 (1968).PubMedGoogle Scholar
  24. 24.
    Hussa, R. 0., Pattillo, R. A., Ruckert, A. C. F., and Scheuermann, K. W., Effects of butyrate and dibutyryl cyclic AMP on hCG-secreting trophoblastic and non-trophoblastic cells, J. Clin. Endocrinol. Metab. 46: 69 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    Kornfeld, R. and Kornfeld, S., The structure of a phytohemagglutinin receptor site from human erythrocytes, J. Biol. Chem. 245: 2536 (1970).PubMedGoogle Scholar
  26. 26.
    Yorde, D. E., Hussa, R. 0., Garancis, J. C., and Pattillo, R. A., Immunocytochemical localization of human choriogonado-tropin in human malignant trophoblast, Lab. Invest. 40: 391 (1979).PubMedGoogle Scholar
  27. 27.
    Cole, L. A., Birken, S., Sutphen, S., Hussa, R. 0., and Pattillo, R. A., Absence of the COOH-terminal peptide on ectopic human chorionic gonadotropin 13-subunit (hCGß), Endocrinology 110: 2198 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    Mead, J. S., Horan, P. K., and Wheeless, L. L., Syringing as a method of cell dispersal, Acta Cytologica 22: 86 (1978).PubMedGoogle Scholar
  29. 29.
    Hause, L. L., Rothwell, D. J., and Straumfjord, Jr., J. V., Measurement of cellular surface charge, Proc. 27th Ann. Conf. Engineer. Biol., Chevy Chase, Maryland (1974), p. 404.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lawrence L. Hause
    • 1
  • Norio Tosaka
    • 1
  • R. A. Pattillo
    • 1
  1. 1.Department of PathologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations