New Horizons in hCG Detection

  • Robert Hussa
  • Laurence A. Cole
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 176)


This chapter will discuss nontrophoblastic hCG production, altered forms of hCG, and how these altered forms and other factors might lead to discordant results in hCG analyses. Finally, trends in clinical detection methods for hCG will be summarized.


Human Chorionic Gonadotropin Glycoprotein Hormone Hydatidiform Mole Altered Form Cole Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hussa, R. O., Human chorionic gonadotropin, a clinical marker: review of its biosynthesis, The Ligand Review 3 (Suppl. 2): 1 (1981).Google Scholar
  2. 2.
    Livingston, V. W. C. and Livingston, A. M., Some cultured immunological and biochemical properties of.Progenitor cryptocides, Trans. N. Y. Acad. Sci. 36: 569 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen, H. and Strampp, A., Bacterial synthesis of substance similar to human chorionic gonadotropin, Proc. Soc. Exp. Biol. Med. 152: 408 (1976).PubMedGoogle Scholar
  4. 4.
    Acevedo, H. F., Slifkin, M., Pouchet, G. R., and Pardo, M., Immunohistochemical localization of a choriogonadotropin-like protein in bacteria isolated from cancer patients, Cancer 41: 1217 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    Maruo, T., Cohen, H., Segal, S. J., and Koide, S. S., Production of choriogonadotropin-like factor by a microorganism, Proc. Natl. Acad. Sci. USA 76: 6622 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    Borkowski, A. and Marquardt, C., Human chorionic gonadotropin in the plasma of normal, nonpregnant subjects, New Engl. J. Med. 301: 298 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    Ayala, A. R., Nisula, B. C., Chen, H. C., Hodgen, G. D., and Ross, G. T., Highly sensitive radioimmunoassay for chorionic gonadotropin in human urine, J. Clin. Endocrinol. Metab. 47: 767 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, H. C., Hodgen, G. D., Matsuura, S., Lin, L. J., Gross, E., Reichert, L. E., Jr., Birken, S., Canfield, R. E., and Ross, G. T., Evidence for a gonadotropin from nonpregnant subjects that has physical, immunological, and biological similarities to human chorionic gonadotropin, Proc. Natl. Acad. Sci. USA 73: 2885 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    Robertson, D. M., Suginami, H., Hernandez Montes, H., Puri, C. P., Choi, S. K., and Diczfalusy, E., Studies on a human chorionic gonadotrophin-like material present in nonpregnant subjects, Acta Endocrinol. 89: 492 (1978).PubMedGoogle Scholar
  10. 10.
    Braunstein, G. D., Rasor, J., and Wade, M. E., Presence in normal human testes of a chorionic-gonadotropin-like substance distinct from human luteinizing hormone, New Engl. J. Med. 293: 1339 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    Braunstein, G. D., Kamdar, V., Rasor, J., Swaminathan, N., and Wade, M. E., Widespread distribution of a chorionic gonadotropin-like substance in normal human tissues, J. Clin. Endocrinol. Metab. 49: 917 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    Hartree, A. S., Shownkeen, R. C., Matsuura, S., and Chen, H. C., The constancy of immunoactive HCG content in pooled human pituitary glands, Endocrinology (Suppl.) 108: A283 (1981) (Abstract).Google Scholar
  13. 13.
    Odell, W. D., Glycopeptide hormones and neoplasms, New Engl. J. Med. 297: 609 (1977).PubMedCrossRefGoogle Scholar
  14. 14.
    Yoshimoto, Y., Wolfsen, A. R., and Odell, W. D., Human chorionic gonadotropin-like substance in nonendocrine tissues of normal subjects, Science 197: 575 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    Yoshimoto, Y., Wolfsen, A. R., and Odell, W. D., Glycosylation, a variable in the production of hCG by cancers, Amer. J. Med. 67: 414 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Sporn, M. B. and Todaro, G. J., Autocrine secretion and malignant transformation of cells, New Engl. J. Med. 303: 878 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    Pattillo, R. A. and Gey, G. O., The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro, Cancer Res. 28: 1231 (1968).PubMedGoogle Scholar
  18. 18.
    Pattillo, R. A., Ruckert, A., Hussa, R., Bernstein, R., and Delfs, E., The JAr cell line - continuous human multi-hormone production and controls, In Vitro 6:398 (1971)(Abstract).Google Scholar
  19. 19.
    Pattillo, R. A. and Ruckert, A. C. F., Establishment of a continuous line of human breast cancer cells in vitro, In Vitro 9:382 (1974)(Abstract).Google Scholar
  20. 20.
    Pattillo, R. A., Hussa, R. O., Story, M. T., Ruckert, A. C. F., Shalaby, M. R., and Mattingly, R. F., Tumor antigen and human chorionic gonadotropin in CaSki cells: a new epidermoid cervical cancer cell line, Science 196: 1456 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    Pattillo, R. A., Hussa, R. O., Ruckert, A. C. F., Story, M. T., and Mattingly, R. F., HCG-beta production by epidermoid carcinoma of the cervix, Endocrinology (Suppl.) 100:A179 (1977)(Abstract).Google Scholar
  22. 22.
    Story, M. T., Cole, L. A., and Hussa, R. O., A procedure using immobilized antibody for the isolation of the 13-subunit of human chorionic gonadotropin from the culture fluid of a 13-subunit-secreting nontrophoblastic cell line, J. Clin. Endocrinol. Metab. 53: 1090 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    Cole, L. A. and Hussa, R. O., Use of glycosidase digested human chorionic gonadotropin β-subunit to explain the partial binding of ectopic glycoprotein hormones to Con A, Endocrinology 109: 2276 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    Cole, L. A., Birken, S., Sutphen, S., Hussa, R. O., and Pattillo, R. A., Absence of the COON-terminal peptide on ectopic human chorionic gonadotropin 13-subunit (hCGß), Endocrinology 110: 2198 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    Dean, D. J., Weintraub, B. D., and Rosen, S. W., De novo synthesis and secretion of heterogeneous forms of human chorionic gonadotropin and its free alpha subunit in the human choriocarcinoma clonal cell line, JEG-3, Endocrinology 106: 849 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    Fein, H. G., Rosen, S. W., and Weintraub, B. D., Increased glycosylation of serum human chorionic gonadotropin and subunits from eutopic and ectopic sources: comparison with placental and urinary forms, J. Clin. Endocrinol. Metab. 50: 1111 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    Morrow, J. S. and Rosen, S. W., Sodium butyrate and dibutyryl cyclic AMP differentially regulate glycosylation of ectopic alpha subunit (a) by Chang liver cells, Endocrinology (Suppl.) 110:A313 (1982)(Abstract).Google Scholar
  28. 28.
    Amr, S., Wehmann, R. E., Birken, S., Canfield, R. E., and Nisula, B. C., Characterization of a carboxyterminal peptide fragment of hCGß excreted in the urine of a woman with choriocarcinoma, Endocrinology (Suppl.) 110:Al29 (1982) (Abstract).Google Scholar
  29. 29.
    Nishimura, R., Endo, Y., Tanabe, K., Ashitaka, Y., and Tojo, S., The biochemical properties of urinary human chorionic gonadotropin from the patients with trophoblastic disease, J. Endocrinol. Invest. 4: 349 (1981).PubMedGoogle Scholar
  30. 30.
    Godine, J. E., Chin, W. W., and Habener, J. F., Detection of two precursors to each of the subunits of human chorionic gonadotropin translated from placental mRNA in the wheat germ cell-free system, Biochem. Biophys. Res. Commun. 104: 463 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    Vaitukaitis, J. L., Braunstein, G. D., and Ross, G. T., A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone, Amer. J. Obstet. Gynecol. 113: 751 (1972).Google Scholar
  32. 32.
    Vaitukaitis, J. L., Practical considerations of specific hCG assays for clinical use, The Ligand Review 3 (Suppl. 2): 45 (1981).Google Scholar
  33. 33.
    Knox, B. S., McKee, J. W., Hair, P. I., and France, J. T., Determination of beta-choriogonadotropin in human plasma; evaluation and comparison of five “kit” methods, Clin. Chem. 26: 1890 (1980).PubMedGoogle Scholar
  34. 34.
    Boyko, W. L. and Barrett, B., Detection and quantitation of the ß-subunit of human chorionic gonadotropin in serum by radioimmunoassay, Fertil. Steril. 33: 141 (1980).PubMedGoogle Scholar
  35. 35.
    Javadpour, N. and Soares, T., False-positive and false-negative alpha-feto protein and human chorionic gonadotropin assays in testicular cancer: a double blind study, Cancer 48: 2279 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    Fowler, J. E., Platoff, G. E., Kubrock, C. A., and Stutzmann, R. E., Commercial radioimmunoassay for beta subunit of human chorionic gonadotropin: falsely positive determinations due to elevated serum luteinizing hormone, Cancer 49: 136 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    Ketchum, C., Maclaren, N., Jensen, J., Phillips, I., Weiner, R., and Kappy, M., False increases of β-subunit choriogonadotropin in commercial kit results because of cross-reactivity with lutropin, Clin. Chem. 28: 1998 (1982).PubMedGoogle Scholar
  38. 38.
    Chan, D. W., Bill, M. J., and Rosenshein, N., Specific binding proteins for human chorionic gonadotrophin in a patient with trophoblastic disease, Amer. J. Clin. Pathol. 76: 214 (1981).Google Scholar
  39. 39.
    Musch, K., Wolf, A. S., and Lauritzen, C., Antibodies to human chorionic gonadotropin in humans, Clin. Chim. Acta 113: 95 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    Nieschlag, E., Bernitz, S., and Topert, M., Antigenicity of human chorionic gonadotrophin preparations in men, Clin. Endocrinol. 16: 483 (1982).CrossRefGoogle Scholar
  41. 41.
    Baulieu, J. L., Lepape, J., Baulieu, F., and Besnard, J. C., Falsely elevated results of radioimmunoassays using double antibody method: arguments for a third anti-rabbit IgG antibody present in certain human sera, Eur. J. Nucl. Med. 7: 121 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    Chen, I. W., Heminger, L., Maxon, H. R., and Tsay, J. Y., Nonspecific binding as a source of error in thyrotropin radioimmunoassay with polyethylene glycol as separating agent, Clin. Chem. 26: 487 (1980).PubMedGoogle Scholar
  43. 43.
    Jawad, M. J. and Wilson, E. A., Effect of variations in globulin concentrations on serum radioimmunoassay results, as exemplified by choriogonadotropin, Clin. Chem. 27: 1993 (1981).PubMedGoogle Scholar
  44. 44.
    Regester, R. F. and Painter, P., False-positive radioimmunoassay pregnancy test in nephrotic syndrome, J. Amer. Med. Assoc. 246: 1337 (1981).CrossRefGoogle Scholar
  45. 45.
    Fritz, T. J., Bunker, D. M., and Lawlor, J., Hyperlipidemia interference in radioimmunoassays, Clin. Chem. 28: 2325 (1982).PubMedGoogle Scholar
  46. 46.
    McReady, J., Braunstein, G. D., Helm, D., and Wade, M. E., Modification of the choriogonadotropin beta-subunit radio-immunoassay for determination of urinary choriogonadotropin, Clin. Chem. 24: 1958 (1978).Google Scholar
  47. 47.
    Rao, C. V. and Hussa, R. O., A simple way to determine nonspecific effects of plasma and serum components in radioreceptor assays and radioimmunoassays for human chorionic gonadotropin, Amer. J. Obstet. Gynecol. 142: 153 (1982).Google Scholar
  48. 48.
    Bangham, D. R. and Storring, P. L., Standardisation of human chorionic gonadotropin, HCG subunits, and pregnancy tests, Lancet 1: 390 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    Shimizu, S. Y., Present, W. A., Sevier, E. D., Wang, R., and Saunders, R. L., Choriogonadotropin measured by use of monoclonal antibodies in a two-site immunoradiometric assay, Clin. Chem. 28: 546 (1982).PubMedGoogle Scholar
  50. 50.
    Higgins, T., Source of error in 6-choriogonadotropin determinations, Clin. Chem. 28: 1822 (1982).PubMedGoogle Scholar
  51. 51.
    Hussa, R. O. and Mattingly, R. F., Semiquantitative use of Biocept-G radioreceptorassay, Obstet. Gynecol. 54: 199 (1979).PubMedGoogle Scholar
  52. 52.
    Elegbe, R. A., Hussa, R. O., Pattillo, R. A., Damole, I. O., Hoffmann, R. G., and Finlayson, W., Glycoprotein hormone alpha subunit and human chorionic gonadotropin in normal pregnancy and gestational trophoblastic disease (GTD), Abstracts of the First World Congress on Trophoblast Neoplasms, Oct. 25–27, 1982, Nairobi.Google Scholar
  53. 53.
    Khazaeli, M. B., England, B. G., Dieterle, R. C., Nordblom, G. D., Kabza, G. A., and Beierwaltes, W. H., Development and characterization of a monoclonal antibody which distinguishes the ß-subunit of human chorionic gonadotropin (ßhCG) in the presence of hCG, Endocrinology 109: 1290 (1981).PubMedCrossRefGoogle Scholar
  54. 54.
    Hussa, R. O., Clinical utility of hCG and a-subunit measurements, Obstet. Gynecol. 60: 1 (1982).PubMedGoogle Scholar
  55. 55.
    Dawood, M. Y., Saxena, B. B., and Landesman, R., Human chorionic gonadotropin and its subunits in hydatidiform mole and choriocarcinoma, Obstet. Gynecol. 50: 172 (1977).PubMedGoogle Scholar
  56. 56.
    Nishimura, R., Ashitaka, Y., and Tojo, S., The clinical evaluation of the simultaneous measurements of human chorionic gonadotropin (hCG) and its alpha-subunit in sera of patients with trophoblastic diseases, Endocrinol. Jap. 26: 575 (1979).CrossRefGoogle Scholar
  57. 57.
    Quigley, M. M., Tyrey, L., and Hammond, C. B., a-Subunit in sera of choriocarcinoma patients in remission, J. Clin. Endocrinol. Metab. 50: 98 (1980).PubMedCrossRefGoogle Scholar
  58. 58.
    Quigley, M. M., Tyrey, L., and Hammond, C. B., Utility of assay of alpha subunit of human chorionic gonadotropin in management of gestational, trophoblastic malignancies, Amer. J. Obstet. Gynecol. 138: 545 (1980).Google Scholar
  59. 59.
    Ashitaka, Y., Nishimura, R., Takemori, M., and Tojo, S., Production and secretion of HCG and HCG subunits by trophoblastic tissue, in: “Chorionic Gonadotropin,” S. J. Segal, ed., Plenum Press, New York (1980), p. 147.CrossRefGoogle Scholar
  60. 60.
    Gaspard, U. J., Hustin, J., Reuter, A. M., Lambotte, R., and Franchimont, P., Immunofluorescent localization of placental lactogen, chorionic gonadotrophin and its alpha and beta subunits in organ cultures of human placenta, Placenta 1: 135 (1980).PubMedCrossRefGoogle Scholar
  61. 61.
    Blackman, M. R., Weintraub, B. D., Rosen, S. W., Kourides, I. A., Steinwascher, K., and Gail, M. H., Human placental and pituitary glycoprotein hormones and their subunits as tumor markers: a quantitative assessment, J. Natl. Cancer Inst. 65: 81 (1980).PubMedGoogle Scholar
  62. 62.
    Benveniste, R., Barnea, E., Ulep, E., and Scommegna, A., Measurement of choriogonadotropin (hCG) alpha-subunit in normal and pathological pregnancy, Endocrinology (Suppl.) 108:A283 (1981)(Abstract).Google Scholar
  63. 63.
    Hagen, C., Gilby, E. D., McNeilly, A. S., Olgaard, K., Bondy, P. K., and Rees, L. EI., Comparison of circulating glycoprotein hormones and their subunits in patients with oat cell carcinoma of the lung and uraemic patients on chronic dialysis, Acta Endocrinol. 83: 26 (1976).PubMedGoogle Scholar
  64. 64.
    Blackman, M. R., Weintraub, B. D., Kourides, I. A., Solano, J. T., Santner, T., and Rosen, S. W., Discordant elevation of the common a-subunit of the glycoprotein hormones compared to β-subunits in serum of uremic patients, J. Clin. Endocrinol. Metab. 53: 39 (1981).PubMedCrossRefGoogle Scholar
  65. 65.
    Mann, K., Haidl, P., Hammerl, B., and Karl, H. J., Incidence of hCG subunits in patients with HCG-positive nonseminomatous testicular germ cell tumors, Acta Endocrinol. (Suppl.) 96: 80 (1981).Google Scholar
  66. 66.
    Kennett, R. H., McKearn, T. J., and Bechtol, K. B., eds., “Monoclonal Antibodies,” Plenum Press, New York (1980).Google Scholar
  67. 67.
    Gupta, S. K. and Talwar, G. P., Development of hybridomas secreting anti-human chorionic gonadotropin antibodies, Indian J. Exp. Biol. 18: 1361 (1980).PubMedGoogle Scholar
  68. 68.
    Sevier, E. D., David, G. S., Martinis, J., Desmond, W. J., Bartholomew, R. M., and Wang, R., Monoclonal antibodies in clinical immunology, Clin. Chem. 27: 11 (1981).Google Scholar
  69. 69.
    Moyle, W. R., Ehrlich, P. H., and Canfield, R. E., Use of monoclonal antibodies to subunits of human chorionic gonadotroto examine the orientation of the hormone in its complex with receptor, Proc. Natl. Acad. Sci. 79: 2245 (1982).PubMedCrossRefGoogle Scholar
  70. 70.
    Wada, H. G., Danisch, R. J., Baxter, S. R., Federici, M. M., Fraser, R. C., Brownmiller, L. J., and Lankford, J. C., Enzyme immunoassay of the glycoprotein tropic hormones - choriogonadotropin, lutropin, thyrotropin - with solid-phase monoclonal antibody for the a-subunit and enzyme-coupled monoclonal antibody specific for the ß-subunit, Clin. Chem. 28: 1862 (1982).PubMedGoogle Scholar
  71. 71.
    Nakamura, R. M. and Maggio, E. T., Biomolecular advances. 2. Monoclonal antibodies - methods of production and applications, The Ligand Review 3: 6 (1981).Google Scholar
  72. 72.
    Stenman, U. H., Tanner, P., Ranta, T., Schroder, J., and Seppala, M., Monoclonal antibodies to chorionic gonadotropin: use in a rapid radioimmunoassay for gynecological emergencies, Obstet. Gynecol. 59: 375 (1982).PubMedGoogle Scholar
  73. 73.
    Nakamura, R. M., Dito, W. R., and Tucker, E. S., eds., “Immunoassays. Clinical Laboratory Techniques for the 1980s,” Alan R. Liss, Inc., New York (1980).Google Scholar
  74. 74.
    Hales, C. N. and Woodhead, J. S., Labeled antibodies and their use in the immunoradiometric assay, Meth. Enzymol. 70: 334 (1980).PubMedCrossRefGoogle Scholar
  75. 75.
    Yorde, D. E., Sasse, E. A., Wang, T. Y., Hussa, R. O., and Garancis, J. C., Competitive enzyme-linked immunoassay with use of soluble enzyme/antibody immune complexes for labeling. I. Measurement of human choriogonadotropin, Clin. Chem. 22: 1372 (1976).PubMedGoogle Scholar
  76. 76.
    Schuurs, A. H. W. M. and van Weemen, B. K., Enzyme-immunoassay, Clin. Chim. Acta 81: 1 (1977).PubMedCrossRefGoogle Scholar
  77. 77.
    Nakamura, R. M., Dito, W. R., and Tucker, E. S., eds., “Immunoassays in the Clinical Laboratory,” Alan R. Liss, Inc., New York (1979).Google Scholar
  78. 78.
    Bos, E., Bosch, A., and Schuurs, A., Enzyme immunoassay. A colorful test, The Ligand Review 3: 35 (1981).Google Scholar
  79. 79.
    Joshi, U. M., Roy, R., Sheth, A. R., and Shah, H. P., A simple and sensitive color test for the detection of human chorionic gonadotropin, Obstet. Gynecol. 57: 252 (1981).PubMedGoogle Scholar
  80. 80.
    Sekiya, T., Furuhashi, Y., Goto, S., Kaseki, S., Tomoda, Y., and Kato, K., Specific enzyme immunoassay for human chorionic gonadotrophin, Acta Endocrinol. 97: 562 (1981).PubMedGoogle Scholar
  81. 81.
    Wisdom, G. B., Recent progress in the development of enzyme immunoassays, The Ligand Review 3: 44 (1981).Google Scholar
  82. 82.
    Mehta, H. C. and MacDonald, D. J., A sensitive enzyme immunoassay specific for human chorionic gonadotrophin, Clin. Chim. Acta 121: 245 (1982).PubMedCrossRefGoogle Scholar
  83. 83.
    Estes, G. B., Virella, G., Quantitative immunofluorescence using the FLAX fluoroimmunoassay system, The Ligand Review 3: 26 (1981).Google Scholar
  84. 84.
    Maggio, E. T. and Nakamura, R. M., Biomolecular advances. 3.Google Scholar
  85. 85.
    Ayala, A. R., Nisula, B. C., Chen, H. C., Hodgen, G. D., and Ross, G. T., Highly sensitive radioimmunoassay for chorionic gonadotropin in human urine, J. Clin. Endocrinol. Metab. 47: 767 (1978).PubMedCrossRefGoogle Scholar
  86. 86.
    Wehmann, R. E., Harman, S. M., Birken, S., Canfield, R. E., and Nisula, B. C., Convenient radioimmunoassay for urinary human choriogonadotropin without interference by human lutropin, Clin. Chem. 27: 1997 (1981).Google Scholar
  87. 87.
    Shimizu, T., Matsuura, S., Oh, S., Ohashi, M., Ashitaka, Y., and Tojo, S., Efficient extraction and radioimmunoassay of chorionic gonadotropin in human urine, Endocrinology (Suppl.) 110:A310 (1982)(Abstract).Google Scholar
  88. 88.
    Boorstein, W. R., Vamvakopoulos, N. C., and Fiddes, J. C., Human chorionic gonadotropin ß-subunit is encoded by at least eight genes arranged in tandem and inverted pairs, Nature 300: 419 (1982).PubMedCrossRefGoogle Scholar
  89. 89.
    Policastro, P., Ovitt, C. E., Hoshina, M., Fukuoka, H., Boothby, M. R., and Boime, I., The ß subunit of human chorionic gonadotropin is encoded by multiple genes, J. Biol. Chem. 258: 11492 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert Hussa
    • 1
  • Laurence A. Cole
    • 1
  1. 1.Department of Gynecology and ObstetricsMedical College of WisconsinMilwaukeeUSA

Personalised recommendations