Biochemical Studies of the Control of Renal Tubular Phosphate Reabsorption

  • Michael F. Grahn
  • Riffat Parveen
  • Peter J. Butterworth
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)


The proximal tubule of the kidney is the site of several important physiological processes including the reabsorbtion of inorganic phosphate from the glomerular filtrate and the production of glucose from intermediate metabolites. The phosphate reabsorption performed by the kidney seems to be the major controlling factor in m aintaining overall phosphate homeostasis.


Glucose Production Tubule Cell Phosphate Transport Proximal Tubule Cell Phosphate Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dennis, V. W., Stead. W. W., Myers, J. L., Renal handling of phosphate and calcium, Annu. Rev. Physiol 41: 257–271 (1979)PubMedCrossRefGoogle Scholar
  2. 2.
    Jacobson, H. R., Functional segmentation of the mammalian nephron, Am. J. Physiol. 241: F203–218 (1981)PubMedGoogle Scholar
  3. 3.
    Watford, M., Hod, Y., Chiao, Y-B., Utter, M. F. Hanson, R. W., The unique role of the kidney in gluconeogensesis in the chicken, J. Biol. Chem. 256: 10023–10027 (1981)PubMedGoogle Scholar
  4. 4.
    Wirthensohn, G., Vandewalle, A. Guder, W. G., Renal glycerol m etabolis m and the distribution of glycerol kinase in rabbit nephron, Biochem. J. 198: 543–549 (1981)PubMedGoogle Scholar
  5. 5.
    Guder, W. G. Rupprecht, A., Metabolism of isolated kidney tubules. Independent actions of catechola mines on renal cyclic adenosine 3’-5’-monophosphate levels and gluconeogenesis, Eur. J. Biochem. 52: 283–290 (1975)PubMedCrossRefGoogle Scholar
  6. 6.
    Kempson, S. A., Colon-Otero, G., Lise0u, S-Y., Turner, S. T. Dousa, T. P., Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat, J. Clin. Invest. 67: 1347–1360 (1981)PubMedCrossRefGoogle Scholar
  7. 7.
    Berndt, T. J., Knox, F. G., Kempson, S. A. Dousa, T. P., Nicotina wide adenine dinucleotide and renal response to parathyroid hormone, Endocrinology 108: 2005–2007 (1981)PubMedCrossRefGoogle Scholar
  8. 8.
    Turner, S. T., Kiebzak, G. M. Dousa, T. P., Mechanism of glucocorticoid effect on renal transport of phosphate, Am. J. PhysioL 243: C227 - C236 (1982)PubMedGoogle Scholar
  9. 9.
    Grahn, M. F. Butterworth, P. J., Modulation of phosphate accumulation in isolated chick kidney cells by gluconeogenic substrates, Bioscience Rep. 2: 661–666 (1982)CrossRefGoogle Scholar
  10. 10.
    Beck, J. C. Sacktor, B., The sodium electrochemical potential.-mediated uphill transport of D-glucose in renal brush border membrane vesicles, J. B.ol. Chem. 253: 5531–5535 (1978)Google Scholar
  11. 11.
    Bergmeyer, H. U. Bernt, E., Glucose determination with glucose oxidase and peroxidase, in: “Methods of Enzymatic Analysis”, Bergmeyer, H. U., ed., Academic Press,N.Y. (1974)Google Scholar
  12. 12.
    Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose, J. Biol. Chem. 153: 375–380 (1944)Google Scholar
  13. 13.
    Lowry, 0. H., Rosebrough, N. J., Farr, A. L. Randall, R. J., Protein measurement with Folin phenol reagent, J. BioL Chem. 193: 265–275 (1951)PubMedGoogle Scholar
  14. 14.
    Grahn, M. F. Butterworth, P. J., Phosphate uptake by proximal tubule cells isolated from chick kidney, Biochem. Soc. Trans. 9: 465–466 (1981)Google Scholar
  15. 15.
    Barrett, P. Q. Aronson, P. S., Glucose and alanine inhibition of phosphate transport in renal microvillus membrane vesicles, Am. J. Physiol. 242: F126 - F131 (1982)PubMedGoogle Scholar
  16. 16.
    Browne, J. L., Sanford, P. A. Smyth, D. H., Transfer and metabolism of citrate, succinate, a-keto-glutarate and pyruvate by hamster small intestine, Proc. R.S.(Lond.)[B] 200: 117–135 (1978)CrossRefGoogle Scholar
  17. 17.
    Gullans, S. R., Brazy, P. C., Soltoff, S. P., Dennis, V. W. M andel, L. J. M etabolic inhibitors: effects on metabolism and transport in the proximal tubule, Am. J. Physiol. 243: F133 - F140 (1982)PubMedGoogle Scholar
  18. 18.
    Vandewalle, A., Wirthensohn, G., Heidrich, H-G. Guder, W. G., Distribution of hexokinase and phosphoenolpyruvate carboxykinase along the rabbit nephron, Am. J. Physiol. 240: F492 - F500 (1981)PubMedGoogle Scholar
  19. 19.
    Robinson, B. H. 0 ei, J., 3-M ercaptopicolinic acid; apreferential inhibitor of the cytosolic phosphoenolpyruvate carboxykinase, FEBS Lett. 58: 12–15 (1975)PubMedCrossRefGoogle Scholar
  20. 20.
    Farese, R. V., Bidot-Lopez, P., Sabir, M. A., Larson, R. E. The phosphatidate-polyphosphoinositide cycle: activation by parathyroid hormone and dibutyryl cyclic AMP in rabbit kidney cortex, Ann. N. Y. Acad. Sci. 372: 539–551 (1981)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Michael F. Grahn
    • 1
  • Riffat Parveen
    • 1
  • Peter J. Butterworth
    • 1
  1. 1.Department of Biochemistry, Chelsea CollegeUniversity of LondonLondonUK

Personalised recommendations