Advertisement

Hyperlipoproteinemia in Phosphate Depletion

  • W. Kreusser
  • W. Haberbosch
  • A. Gnasso
  • E. Ritz
  • J. Augustin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)

Abstract

Phosphate depletion is known to cause not only abnormalities of electrolyte metabolism (1, 2), but also disturbances of intermediary metabolism, e.g. abnormal insulin release (3), abnormal insulin responsiveness (4) and impaired hormonal stimulation of hepatic gluconeogenesis (5). The present communication describes another metabolic consequence of phosphate depletion, severe reversible hyperlipoproteinemia in the phosphate depleted dog.

Keywords

Free Fatty Acid Lipoprotein Lipase Endothelial Lipase Phosphate Depletion Electrolyte Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knochel, J.P.: The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch. Int. Med. 137, 203–220 (1977)CrossRefGoogle Scholar
  2. 2.
    Kreusser, W., Kurokawa, K., Aznar, E., Massry, S.G.: Phosphate depletion, Mineral Electrolyte Metab. 5, 30–42 (1978)Google Scholar
  3. 3.
    Marshall, W.P., Banasiak, M.F., Kalkhoff, R.K.: Effects of phosphate deprivation on carbohydrate metabolism. Horm. Metab. Res. 10, 369–373 (1978)PubMedCrossRefGoogle Scholar
  4. 4.
    De Fronzo, R.A., Lange, R.: Hypophosphatemia and glucose intolerance: Evidence for tissue insensitivity to insulin. J. Biol. Chem. 246, 4759–4763 (1971)Google Scholar
  5. 5.
    Hörl, W.H., Kreusser, W., Heidland, A., Stepinski,J., Ritz, E.: Defective hormonal stimulation of isolated hepatocytes in phosphorus depleted rats. Adv. Exp. Med. Biol. 151, 303–308 (1982)Google Scholar
  6. 6.
    Fiske, C.H., Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–381 (1925)Google Scholar
  7. 7.
    Novak, M.: Colorimetric ultramicro method for the determination of free fatty acids. L. Lipid. Res. 6, 431–433 (1965)Google Scholar
  8. 8.
    Haberbosch, W., Poli, A., Marx, A., Augustin J.: Quantification of apoproteins–clinical significance. Inn.Med. 9, 99–103 (1982)Google Scholar
  9. 9.
    Augustin, J., Freeze, H., Teyada, P., Brown, W.V.: A comparison of molecular properties of hepatic tri-glyceride lipase and lipoprotein lipase from human post-heparin plasma. J. Biol. Chem. 253, 2912–2920 (1978)PubMedGoogle Scholar
  10. 10.
    Kinnunen, P.K.J., Vainio, P., Thurau, T.: Evidence against the role of hepatic endothelial lipase in the metabolism of plasma HDL2. Atherosclerosis 40, 377–379 (1981)PubMedCrossRefGoogle Scholar
  11. 11.
    Kinnunen, P.K.J., Virtanen, I.: Role of the hepatic endothelial lipase in the plasma lipoprotein metabolism. 22nd Intern. Conf. Biochem. Lipids, 24, 80 (1980)Google Scholar
  12. 12.
    Kinnunen, P.K.J., Virtanen, I.: Mode of action of the hepatic endothelial lipase–Recycling endocytosis via coted pits. In: A.H. Gotto, Jr., L.C. Smith, B.Allen (eds.), Atherosclerosis V, Springer-Verlag New York, Heidelberg, Berlin, 383–386 (1980)Google Scholar
  13. 13.
    Klock, J.C., Shohet, S.B.: Erythrocyte membrane lipid abnormalities in hypophosphatemic hemolysis. J. Clin. Invest. 52, 47A (1973)Google Scholar
  14. 14.
    Kreusser, W., Ritz, E., Boland, R., Brachmann, J.: Function of the sarcoplasmic reticulum in hypophosphatemic myopathy. Adv. Exp. Med. Biol. 128, 313321 (1980)Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • W. Kreusser
    • 1
  • W. Haberbosch
    • 1
  • A. Gnasso
    • 1
  • E. Ritz
    • 1
  • J. Augustin
    • 1
  1. 1.Medizinische Univ.-Klinik HeidelbergGermany

Personalised recommendations