Importance of Calcium in the Renal Hemodynamic Changes Induced by Vanadate

  • Julio E. Benabe
  • Manuel Martínez-Maldonado
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)


Vanadate has been recognized as an inhibitor of (Na+, K+)-ATPase (1, 5). Several groups have emphasized it’s potential role as a regulator of the enzyme in the kidney (6), an organ where vanadium tends to accumulate (7). In the dog, intraarterial infusion of vanadate produces a marked vasoconstriction, a decrease in renal blood flow and glomerular filtration rate as well as a decrease in urine flow and sodium excretion (8, 9). In addition to the hemodynamic changes there is also a decrease in renin secretion (10, 11), suggesting that the vasoconstriction is a direct result of the inhibition of the vascular ATPase system. Inhibition by vanadate of sodium or calcium pumps may increase the influx of Ca++ or reduce its efflux from the cytoplasm of muscle cell. This increase in cytoplasmic Ca++ may serve as a stimulus for vasoconstriction.


Renal Artery Serum Calcium Renal Blood Flow Urine Flow Sodium Orthovanadate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. A. Beaugé and I. M. Glynn, Commercial ATP containing traces of vanadate alters the responce of (Na+-K+)-ATPase. to external potassium. Nature London 272: 551 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    M. D. Blaustein, Sodium ions, calcium ions blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am. J. Physiol. 232: C165 (1977).PubMedGoogle Scholar
  3. 3.
    U. Borchard, K. Greef f, D. Hafner, E. Noack, and K. Rojsathaporn, Effects of vanadate on heart and circulation. J. Cardiovasc. Pharmacol. 3: 510 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    L. C. Cantley, Jr., and P. Aisen, The fate of cytoplasmic vanadium implications on (Na, K)-ATPase inhibition. J. Biol. Chem. 254: 1781 (1979).PubMedGoogle Scholar
  5. 5.
    L. C. Cantley, Jr., L. Josephson, R. Warner, M. Yanagisawa, C. Lechene, an G. Guidotti. Vanadate is a potent (Na+, K+)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem 252: 7421 (1977).PubMedGoogle Scholar
  6. 6.
    J. J. Grantham, The renal sodium pump and vanadate. Am. J. Physic): 239: F97 (1980).Google Scholar
  7. 7.
    P. L. Jorgensen, Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 864 (1980).PubMedGoogle Scholar
  8. 8.
    D. J. Inciarte, R. P. Steffen, D. E. Dobbins, B. T. Swindall, J.Johnston, and F. J. Haddy, Cardiovascular effects of vanadate in the dog. Am. J. Physiol. 239: H47 (1980).PubMedGoogle Scholar
  9. 9.
    J. M. López-Novoa, V. Mayol and M. Martínez-Maldonado, Renal actions of orthovanadate in the dog. Proc. Soc. Exp. Biol. Med. 170: 418 (1982).PubMedGoogle Scholar
  10. 10.
    P. C. Churchill and M. C. Churchill, Vanadate inhibits renin secretion from rat kidney slices. J. Pharmacol. Exp. Ther. 213: 114 (1980).Google Scholar
  11. 11.
    J. M. López-Novoa, J. C. García, M. A. Cruz-Soto, J. E. Benabe, and M. Martínez-Maldonado, Effect of sodium orthovanadate on renal renin secretion in vivo. J. Pharmacol. Exp. Ther. 222: 447 (1982).PubMedGoogle Scholar
  12. 12.
    A.Kamur and C. N. Corder, Diuretic and vasoconstrictor effects of sodium orthovanadate on the isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 213: 85 (1980).Google Scholar
  13. 13.
    J. A. Larsen, O. Thomsen, and O. Hansen, Vanadate induced oliguria in the anesthetized cat. Acta Physiol. Scan. 106: 495 (1979).CrossRefGoogle Scholar
  14. 14.
    J. P. Rapp, Aortic responses to vanadate: independence from (Na+ and K+)-ATPase and comparison of Dahl salt-sensitive and salt-resistant rats. Hypertension 3: 1168 (1980).Google Scholar
  15. 15.
    H. Ozaki, and N. Urakawa, Effects of vanadate on mechanismal responses and Na+ - K+ pump in vascular smooth muscle. Eur. J. Pharmacol. 68: 339 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    S. G. O’Neal, D. B. Rhoads and E. Racker, Vanadate inhibition of sarcoplasmic reticulum Ca++ - ATPase and other ATPases. Biochem. Biophys. Res. Comm. 89: 845 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Varecka and E. Caratoli, Vanadate-induced movements of Ca++ and K+ in human red blood cells. J. Biol. Chem. 257: 7414 (1982).PubMedGoogle Scholar
  18. 18.
    R. L. Smith, K. Zinn, and L. C. Cantley, A study of the (Na+, K+) ATPase, evidence against interacting nucleotide site models. J. Biol. Chem. 255: 9852 (1980).PubMedGoogle Scholar
  19. 19.
    T. Wang, L. I. Tsai, R. J. Solaro, A. O. Grassi de Gende and A. Schwarts, Effects of potassium on vanadate inhibition of sarcop hsmic reticulum Ca++-ATPase from dog cardiac and rabbit skeletal muscle. Biochem. Biophys. Res. Comm. 91: 356 (1979)PubMedCrossRefGoogle Scholar
  20. 20.
    L. C. Cantley, Jr., M. D. Resh and G. Guidotti, Vanadate inhibits the red cell (Nat, K+)-ATPase from the cytoplasmic side. Nature London 272: 552 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    I. G. Macara, K. Kustin, and L.C. Cantley, Jr., Glutathione reduces cytoplasmic vanadate: mechanism and physiological implications. Biochim. Biophys. Acta 629: 95 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Heinz, K. A. Rubinson, and J. J. Grantham, The transport and accumulation of oxyvanadium compounds in human erythrocytes in vitro. J. Lab. Clinc. Med. 100: 593 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Julio E. Benabe
    • 1
  • Manuel Martínez-Maldonado
    • 1
  1. 1.Renal Metabolic Laboratory, Medical and Research Service Veterans Administration Center and the Department of Medicine and PhysiologyUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico

Personalised recommendations