Skip to main content

Importance of Calcium in the Renal Hemodynamic Changes Induced by Vanadate

  • Chapter
Phosphate and Mineral Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 178))

  • 72 Accesses

Abstract

Vanadate has been recognized as an inhibitor of (Na+, K+)-ATPase (1, 5). Several groups have emphasized it’s potential role as a regulator of the enzyme in the kidney (6), an organ where vanadium tends to accumulate (7). In the dog, intraarterial infusion of vanadate produces a marked vasoconstriction, a decrease in renal blood flow and glomerular filtration rate as well as a decrease in urine flow and sodium excretion (8, 9). In addition to the hemodynamic changes there is also a decrease in renin secretion (10, 11), suggesting that the vasoconstriction is a direct result of the inhibition of the vascular ATPase system. Inhibition by vanadate of sodium or calcium pumps may increase the influx of Ca++ or reduce its efflux from the cytoplasm of muscle cell. This increase in cytoplasmic Ca++ may serve as a stimulus for vasoconstriction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Beaugé and I. M. Glynn, Commercial ATP containing traces of vanadate alters the responce of (Na+-K+)-ATPase. to external potassium. Nature London 272: 551 (1978).

    Article  PubMed  Google Scholar 

  2. M. D. Blaustein, Sodium ions, calcium ions blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am. J. Physiol. 232: C165 (1977).

    PubMed  CAS  Google Scholar 

  3. U. Borchard, K. Greef f, D. Hafner, E. Noack, and K. Rojsathaporn, Effects of vanadate on heart and circulation. J. Cardiovasc. Pharmacol. 3: 510 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. L. C. Cantley, Jr., and P. Aisen, The fate of cytoplasmic vanadium implications on (Na, K)-ATPase inhibition. J. Biol. Chem. 254: 1781 (1979).

    PubMed  CAS  Google Scholar 

  5. L. C. Cantley, Jr., L. Josephson, R. Warner, M. Yanagisawa, C. Lechene, an G. Guidotti. Vanadate is a potent (Na+, K+)-ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem 252: 7421 (1977).

    PubMed  CAS  Google Scholar 

  6. J. J. Grantham, The renal sodium pump and vanadate. Am. J. Physic): 239: F97 (1980).

    CAS  Google Scholar 

  7. P. L. Jorgensen, Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60: 864 (1980).

    PubMed  CAS  Google Scholar 

  8. D. J. Inciarte, R. P. Steffen, D. E. Dobbins, B. T. Swindall, J.Johnston, and F. J. Haddy, Cardiovascular effects of vanadate in the dog. Am. J. Physiol. 239: H47 (1980).

    PubMed  CAS  Google Scholar 

  9. J. M. López-Novoa, V. Mayol and M. Martínez-Maldonado, Renal actions of orthovanadate in the dog. Proc. Soc. Exp. Biol. Med. 170: 418 (1982).

    PubMed  Google Scholar 

  10. P. C. Churchill and M. C. Churchill, Vanadate inhibits renin secretion from rat kidney slices. J. Pharmacol. Exp. Ther. 213: 114 (1980).

    Google Scholar 

  11. J. M. López-Novoa, J. C. García, M. A. Cruz-Soto, J. E. Benabe, and M. Martínez-Maldonado, Effect of sodium orthovanadate on renal renin secretion in vivo. J. Pharmacol. Exp. Ther. 222: 447 (1982).

    PubMed  Google Scholar 

  12. A.Kamur and C. N. Corder, Diuretic and vasoconstrictor effects of sodium orthovanadate on the isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 213: 85 (1980).

    Google Scholar 

  13. J. A. Larsen, O. Thomsen, and O. Hansen, Vanadate induced oliguria in the anesthetized cat. Acta Physiol. Scan. 106: 495 (1979).

    Article  CAS  Google Scholar 

  14. J. P. Rapp, Aortic responses to vanadate: independence from (Na+ and K+)-ATPase and comparison of Dahl salt-sensitive and salt-resistant rats. Hypertension 3: 1168 (1980).

    Google Scholar 

  15. H. Ozaki, and N. Urakawa, Effects of vanadate on mechanismal responses and Na+ - K+ pump in vascular smooth muscle. Eur. J. Pharmacol. 68: 339 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. S. G. O’Neal, D. B. Rhoads and E. Racker, Vanadate inhibition of sarcoplasmic reticulum Ca++ - ATPase and other ATPases. Biochem. Biophys. Res. Comm. 89: 845 (1979).

    Article  PubMed  Google Scholar 

  17. L. Varecka and E. Caratoli, Vanadate-induced movements of Ca++ and K+ in human red blood cells. J. Biol. Chem. 257: 7414 (1982).

    PubMed  CAS  Google Scholar 

  18. R. L. Smith, K. Zinn, and L. C. Cantley, A study of the (Na+, K+) ATPase, evidence against interacting nucleotide site models. J. Biol. Chem. 255: 9852 (1980).

    PubMed  CAS  Google Scholar 

  19. T. Wang, L. I. Tsai, R. J. Solaro, A. O. Grassi de Gende and A. Schwarts, Effects of potassium on vanadate inhibition of sarcop hsmic reticulum Ca++-ATPase from dog cardiac and rabbit skeletal muscle. Biochem. Biophys. Res. Comm. 91: 356 (1979)

    Article  PubMed  CAS  Google Scholar 

  20. L. C. Cantley, Jr., M. D. Resh and G. Guidotti, Vanadate inhibits the red cell (Nat, K+)-ATPase from the cytoplasmic side. Nature London 272: 552 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. I. G. Macara, K. Kustin, and L.C. Cantley, Jr., Glutathione reduces cytoplasmic vanadate: mechanism and physiological implications. Biochim. Biophys. Acta 629: 95 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. A. Heinz, K. A. Rubinson, and J. J. Grantham, The transport and accumulation of oxyvanadium compounds in human erythrocytes in vitro. J. Lab. Clinc. Med. 100: 593 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Benabe, J.E., Martínez-Maldonado, M. (1984). Importance of Calcium in the Renal Hemodynamic Changes Induced by Vanadate. In: Massry, S.G., Maschio, G., Ritz, E. (eds) Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 178. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4808-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4808-5_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4810-8

  • Online ISBN: 978-1-4684-4808-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics