Interactions between Mg and Blood Pressure

  • Kai Lau
  • Claire Oasa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)


The relationship between magnesium and blood pressure has been sought, evaluated and studied in considerable depth both in the intact animal and at the level of the various organs involved. In the simplest form, three potential interactions are possible (Table 1). Although new insights have been gained regarding the acute effects of Mg loading or withdrawal on muscle cell excitability-contraction coupling, the contractile process and energy metabolism, present knowledge is still inadequate to establish the first form of interaction, viz. whether changes in Mg metabolism would produce sustained alterations in blood pressure in the intact but complex animal, endowed with all the physiologic counterregulatory and/or adaptive mechanisms. Bluntly put, the role of disturbances in Mg homeostasis, if any, has not been sufficiently defined in the pathogenesis and/or maintenance of hypertension.


Magnesium Sulfate Systemic Blood Pressure Federation Proceeding Magnesium Salt Ganglionic Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.D. Blackfan and B. Hamilton. Uremia in acute glomerular nephritis. Boston Med Surg J. 193 (14): 617–623 (1925).CrossRefGoogle Scholar
  2. 2.
    S.J. Meltzer and J. Auer. Physiological and pharmacological studies of magnesium salts. III. The narcotizing effect of magnesium salts upon nerve fibers. Am. J. Physiol. 16: 233–251 (1906).Google Scholar
  3. 3.
    S.A. Matthews and C. Brooks. On the action of magnesium sulfate. J. Pharmacol. Exper. Therap. 2: 87–99 (1910).Google Scholar
  4. 4.
    G.M. Maxwell, R.B. Elliott, and R.H. Burnell. Effects of hypermagnesemia on general and coronary hemodynamics of the dog. Am. J. Physiol. 208 (1): 158–161 (1965).PubMedGoogle Scholar
  5. 5.
    H.E. Hoff, P.K. Smith, and A.W. Winkler. The Relation of blood pressure and concentration in serum of potassium, calcium and magnesium. Am J. Physiol. 127: 722–729 (1939).Google Scholar
  6. 6.
    W.J. Mroczek, W.R. Lee, and M.E. Davidov. Effect of magnesium sulfate on cardiovascular hemodynamics. Angiology. 28: 720–724 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    T.E. Emerson, J.B. Scott and F.J. Haddy. Effects of acute multiple changes in plasma electrolyte levels on dog blood pressure. Am J Physiol. 218: 234–240 (1970).PubMedGoogle Scholar
  8. 8.
    F.J. Haddy, J.B. Scott, M.A. Florio, R.M. Daugherty, Jr., and J.N. Huizenga. Local vascular effects of hypokalemia, alkalosis, hypercalcemia, and hypomagnesemia. Am. J. Physiol. 204 (2): 202–212 (1963).Google Scholar
  9. 9.
    F.J. Haddy and J.B. Scott. Mechanism of the acute pressor action of hypokalemia, hypomagnesemia, and hypoosmolality. Am Heart J. 83 (5): 655–661 (1973).CrossRefGoogle Scholar
  10. 10.
    D.K. Anderson, S.A. Roth, R.A. Brace, D. Radowski, F.J. Haddy, and J.B. Scott. Effect of hypokalemia and hypomagnesemia produced by hemodialysis on vascular resistance in canine skeletal muscle. Circulation Research. 31: 165–173 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    W.J. Hoppe and T.E. Emerson. Effects of hemodialysis-induced hypokalemia and hypomagnesemia on blood pressure in dogs. Am Heart J. 88 (2): 198–204 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    I. Leusen. The influence of calcium, potassium and magnesium ions in cerebrospinal fluid on vasomotor system. J. Physiol. 110: 319–329 (1949).PubMedGoogle Scholar
  13. 13.
    J.B. Stanbury. The blocking action of magnesium on sympathetic ganglia. J. Pharmacol. Exper. Therap. 93: 52–62 (1948).Google Scholar
  14. 14.
    L.E. Ford and R.J. Podolsky. Intracellular calcium movements in skinned muscle fibres. J. Physiol. London. 223: 21–33 (1972).PubMedGoogle Scholar
  15. 15.
    A. Fabiato and F. Fabiato. Effects of magnesium on contractile activation of skinned cardiac cells. J. Physiol. London. 249: 497–517 (1975).PubMedGoogle Scholar
  16. 16.
    K.I. Shine and A.M. Douglas. Magnesium effects on ionic exchange and mechanical function in rat ventricle. Am. J. Physiol. 227: 317–324 (1974).PubMedGoogle Scholar
  17. 17.
    W. Vierling, F. Ebner, and M. Reiter. The opposite effects of magnesium and calcium on the contraction`of the guinea-pig ventricular myocardium in dependence on the sodium concentration. Arch. Pharmacol. 303: 111–119 (1978).CrossRefGoogle Scholar
  18. 18.
    G.A. Langer, S.D. Serena, and L.M. Nudd. Cation exchange in heart cell culture: correlation with effects on contractile force. J. Mol. Cell. Cardiol. 6: 149–161 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    M.R. Bristow, J.R. Daniels, R.S. Kernoff, and D.C. Harrison. Effect of D 600, practolol, and alterations in magnesium on ionized calcium concentration-response relationships in the intact dog. Circ. Res. 41: 574–581 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    J.B. Stanbury and A. Farah. Effects of magnesium ion on the heart and on its response to digoxin. J. Pharmacol. Exp. Ther. 100: 445–453 (1950).PubMedGoogle Scholar
  21. 21.
    B.M. Paddle and N. Haugaard. Role of magnesium in effects of epinephrine on heart contraction and metabolism. Am J Physiol. 221 (4): 1178–1184 (1971).PubMedGoogle Scholar
  22. 22.
    J.P. Reuben, P.W. Brandt, M. Berman, and H. Grundfest. Regulation of tension in the skinned crayfish muscle fiber. J. Gen. Physiol. 57: 385–407 (1971).CrossRefGoogle Scholar
  23. 23.
    R.J. Solaro and J. Shiner. Modulation of Ca++ control of dog and rabbit cardiac myofibrils by Mg++. Circ. Res. 39: 8–14 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Kovacs and J.M. O’Donnell. An analysis of calcium-magnesium antagonism in contractility and ionic balance in isolated trabecular muscle of rat ventricle. Pfluegers Arch. 360: 267–282 (1975).CrossRefGoogle Scholar
  25. 25.
    E.W. Stephenson. Magnesium effects on activation of skinned fibers from striated muscle. Federation Proceedings. 40 (12): 2662–2666 (1981).PubMedGoogle Scholar
  26. 26.
    D.F. Bohr. Electrolytes and smooth muscle contraction. Pharmacological Reviews. 16: 85–111 (1964).PubMedGoogle Scholar
  27. 27.
    K.I. Shine. Myocardial effects of magnesium. Am. J. Physiol. 237 (4): H413 - H423 (1979).PubMedGoogle Scholar
  28. 28.
    P.K. Smith, A.W. Winkler and H.E. Hoff. Electrocardiographic changes and concentrations of magnesium in serum following intravenous injection of magnesium salts. Am. J. Physiol. 126: 720–730 (1939).Google Scholar
  29. 29.
    L. Engbaek. The pharmacological actions of magnesium ions with particular reference to the neuromuscular and the cardiovascular system. Pharm Review. 4: 396–414 (1952).Google Scholar
  30. 30.
    V.G. Haury. The effect of intravenous injections of magnesium sulfate in the vascular system. J. Pharmacol. Exper. Therap. 65: 453–460 (1939).Google Scholar
  31. 31.
    B.M. Altura and B.T. Altura. Magnesium ions and contraction of vascular smooth muscles: relationship to some vascular diseases. Federation Proceedings. 40 (12): 2672–2679 (1981).PubMedGoogle Scholar
  32. 32.
    W. Hasselbach, E. Fassold, A. Migala, and B. Rauch. Magnesium dependence of sarcoplasmic reticulum calcium transport. Federation Proceedings. 40 (12): 2657–2661 (1981).PubMedGoogle Scholar
  33. 33.
    J.D. Potter, S.P. Robertson, and J.D. Johnson. Magnesium and the regulation of muscle contraction. Federation Proceedings. 40 (12): 2653–2656 (1981).PubMedGoogle Scholar
  34. 34.
    H.W. Overbeck, R.M. Daughtery, and F.J. Haddy. Response of the human upper extremity vascular bed to intrabrachial arterial infusions of magnesium sulfate and hypotonie sodium chloride solusions. The Physiologist. 9: 258 (abstract) (1966).Google Scholar
  35. 35.
    E.D. Frohlich, J.B. Scott, and F.J. Haddy. Effect of cations on resistance and responsiveness of renal and forelimb vascular beds. Am. J. Physiol. 203 (3): 583–587 (1962).PubMedGoogle Scholar
  36. 36.
    H. Viveros and G.G. Somjen. Magnesium-calcium antagonism in the contraction of arterioles. Experimentia. 24 (5): 457–459 (1968).CrossRefGoogle Scholar
  37. 37.
    B.M. Altura and B.T. Altura. Magnesium and vascular tone and reactivity. Blood Vessels. 15: 5–16 (1978).PubMedGoogle Scholar
  38. 38.
    N. Sperelakis. Contraction of depolarized smooth muscle by electric fields. Am. J. Physiol. 202: 731–742 (1962).PubMedGoogle Scholar
  39. 39.
    L.C. Chesley and I. Tepper. Plasma levels of magnesium attained in magnesium sulfate therapy for preeclampsia and eclampsia. Surgical Clinics of North Am. 37: 353–367 (1957).Google Scholar
  40. 40.
    C.E. Flowers, Jr. Magnesium sulfate in obstetrics. Am. J. Obst. Gynec. 91 (6): 763–776 (1965).Google Scholar
  41. 41.
    C. Casa, B. Eby, and K. Lau. Mg metabolism in spontaneous hypertensive rats: Effects of chronic Mg loading. Clinical Research. 31(4):abstract (1983).Google Scholar
  42. 42.
    I. Clark and L. Belanger. The effects of alterations in dietary magnesium on calcium, phosphate and skeletal metabolism. Cale. Tiss. Res. 1: 204–218 (1967).CrossRefGoogle Scholar
  43. 43.
    I. Clark. Effects of magnesium ions on calcium and phosphorus metabolism. Am J Physiol. 244 (2): 348–356 (1968).Google Scholar
  44. 44.
    Y. Itokawa, C. Tanaka, and M. Fujiwara. Changes in body temperature and blood pressure in rats with calcium and magnesium defiencies. J Applied Physiol. 37 (6): 835–839 (1974).Google Scholar
  45. 45.
    E.D. Frohlich. Plasma sodium, potassium, calcium, and magnesium concentrations in essential hypertension. Am. J. Med. Sci. 248: 419 (1964).PubMedCrossRefGoogle Scholar
  46. 46.
    L.M. Resnick, J.P. Nicholson, J.E. Seeley, and J.H. Laragh. Acute and long-term effects of calcium channel blockade on divalent ions, blood pressure and plasma activity. Clin Res. 30 (2): 253A (1983).Google Scholar
  47. 47.
    D.G. Albert, Y. Morita, and L.T. Iseri. Serum magnesium and plasma sodium levels in essential vascular hypertension. Circulation. 17: 761–764 (1958).PubMedCrossRefGoogle Scholar
  48. 48.
    F.K. Bauer, H.E. Martin, and M.R. Mickey. Exchangeable magnesium in hypertension. Proc. Soc. Expt. Biol. Med. 120: 466–468 (1965).Google Scholar
  49. 49.
    R.H. Seller, 0. Ramirez-Muxo, A. N. Brest, and J.H. Moyer. Magnesium metabolism in hypertension. JAMA, 191 (8): 118–120 (1965).Google Scholar
  50. 50.
    D.A. McCarron. Impaired nephrogenous cAMP response in the spontaneously hypertensive rat. Proceedings of the 15th Annual Meeting of the Am. Soc. Neph., p13A, 1982, Chicago.Google Scholar
  51. 51.
    B. Petersen, M. Schroll, C. Christiansen, and I.B. Transbol. Serum and erythrocyte magnesium in normal elderly danish people. Acta Med Scan. 201: 31–34 (1977).CrossRefGoogle Scholar
  52. 52.
    L. Tobian and J.T. Binion. Tissue cations and water in arterial hypertension. Circulation. 5.: 754–758 (1952).Google Scholar
  53. 53.
    G.M. Fischer, E.I. Mata, and J.G. Llaurado. Regional differences in magnesium, calcium, and zinc composition of arterial wall in normal and hypertensive dogs. Am Heart J. 75 (6): 784–789 (1968).PubMedCrossRefGoogle Scholar
  54. 54.
    I.J. Mader and L.T. Iseri. Spontaneous hypopotassemia, hypomagnesemia, alkalosis and tetany due to hypersecretion of corticosterone-like mineralocorticoid. Am. J. Med. 19: 976–988 (1955).PubMedCrossRefGoogle Scholar
  55. 55.
    M.D. Milne, R.C. Muehrcke, and I. Aird. Primary aldosteronism. Quart. J. Med. 26: 319–333 (1957).Google Scholar
  56. 56.
    D.A. McCarron, C.D. Morris, and C. Cole. Dietary calcium in human hypertension. Science. 217: 267–269 (1982).PubMedCrossRefGoogle Scholar
  57. 57.
    T. Thulin, M. Abdulla, I. Dencker, M. Jagerstad, A. Melander, A. Norden, B. Schersten, and B. Akesson. Comparison of energy and nutrient intakes in women with high and low blood pressure levels. Acta Med Scan. 208: 367–373 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kai Lau
    • 1
  • Claire Oasa
    • 1
  1. 1.Division of Nephrology Department of Internal MedicineThe University of MichiganAnn ArborUSA

Personalised recommendations