Advertisement

Direct in Vitro Effects of 1,25 (OH) 2 Vitamin D3 on Phosphate Transport in Isolated Enterocytes from Normal or Vitamin D Deficient Rats

  • Gérard Karsenty
  • Bernard Lacour
  • André Ulmann
  • Evelyne Pierandrei
  • Tilman Drüeke
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)

Abstract

1,25 dihydroxy vitamin D3 (1,25(OH)2 D3), the main active metabolite of vitamin D3, stimulates intestinal phosphate (Pi) absorption (1). Pi transport across the enterocyte appears to involve at least three steps (2): 1) Pi entry across the luminal brush border membrane into the enterocyte, a secondary active or facilitated process requiring energy provided by the sodium (Na+) gradient, 2) Pi transport from the mucosal to the serosal side of the cell, 3) Pi extrusion of the enterocyte into the extracellular space across the basolateral membrane. It has been proposed that 1,25(OH)2 D3 could act by altering the rate of Na+ dependent mucosal entry of Pi into the cell. However, the precise mechanism by which the hormone enhances intestinal Pi transport is still controversial.

Keywords

Brush Border Membrane Brush Border Membrane Vesicle Intestinal Brush Border Membrane Main Active Metabolite Intestinal Brush Border Membrane Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Murer, and B. Hillmann, Trancellular transport of calcium and inorganic phosphate in the small intestine. Am. J. Physiol. 240: 409 (1981).Google Scholar
  2. 2.
    M. Peterlik, and R.H. Wasserman, Effect of vitamin D on transepithelial phosphate transport in chick intestine. Am. J. Physiol. 234: 379 (1978).Google Scholar
  3. 3.
    B. Lacour, T. Drüeke, E. Pierandrel, B. Nabarra, and J.L. Funck-Brentano, Rat enterocyte Na+ transport in vitro: action of parathyroid hormone and calcitonin. Biochim. Biophys. Acta 848: 151 (1981).Google Scholar
  4. 4.
    O.H. Lowry, J.J. Rosebrough, A.L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  5. 5.
    O. Fontaine, T. Matsumoto, D.B.P. Goodman, and V.H. Rasmussen, Liponomic control of Ca2+ transport relationship to mechanism of action on 1,25 dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 78: 1751 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Matsumoto, O. Fontaine, and H. Rasmussen, Effect of 1,25 dihydroxyvitamin D3 on phosphate uptake into chick intestinal brush border membrane vesicles. Biochim. Biophys. Acta 599: 13 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    S.T. Birge, and R.A. Miller, The role of Pi in the action of vitamin D on the intestine. J. Clin. Invest. 60: 980 (1977).PubMedCrossRefGoogle Scholar
  8. 8.
    P.J.A. O’Doherty, 1,25 dihydroxyvitamin D3 increases the activity of the intestinal phosphatidyl choline deacylation reacylation cycle. Lipids 14: 75 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    C.T. Liang, J. Barnes, R. Balakir, L. Cheng, and B. Sacktor, In vitro stimulation of phosphate uptake in isolated chick renal cells by 1,25 dihydroxycholecalciferol. Proc. Natc. Acad. Sci. USA 79:3532 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gérard Karsenty
    • 1
  • Bernard Lacour
    • 1
  • André Ulmann
    • 1
  • Evelyne Pierandrei
    • 1
  • Tilman Drüeke
    • 1
  1. 1.INSERM U.90 and Laboratoire de PhysiologieHôpital NeckerParisFrance

Personalised recommendations