Advertisement

ATP as a Factor in the Response of the cAMP System to PTH in Proximal and Distal Convoluted Tubules

  • Thomas P. Dousa
  • Gary M. Kiebzak
  • Ahad N. K. Yusufi
  • Eiji Kusano
  • Julie Braun-Werness
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)

Abstract

Since the discovery of cyclic 3′ ,5′-AMP (cAMP) as an intra-cellular mediator in hormone-responsive tissues by E. W. Sutherland (1), it was well recognized that ATP serves as a substrate for the key enzyme of cAMP metabolism—adenylate cyclase (AdC). Later it was also found that ATP may modulate cAMP catabolism by inhibiting cAMP-phosphodiesterase (cAMP-PDIE) (2). However, in recent years little attention was paid to cellular levels of ATP as a potential determinant of hormone-sensitive cAMP metabolism.

Keywords

Diabetes Insipidus Nephrogenic Diabetes Insipidus cAMP Accumulation Distal Convoluted Tubule Proximal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. W. Sutherland, On the biological role of cyclic AMP, JAMA 214: 1281 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    T. P. Dousa, Cyclic nucleotides in renal pathophysiology, in: “Hormonal Function and the Kidney,” B. Brenner and J. Stein, ed., Churchill Livingstone, New York (1979).Google Scholar
  3. 3.
    F. Morel, Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240: F159 (1981).PubMedGoogle Scholar
  4. 4.
    B. A. Jackson, R. M. Edwards, H. Valtin, and T. P. Dousa, Cellular action of vasopressin in medullary tubules of mice with hereditary nephrogenic diabetes insipidus, J. Clin. Invest. 66: 110 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    R. M. Edwards, B. A. Jackson, and T. P. Dousa, ADH-sensitive cAMP system in papillary collecting duct: Effect of osmolality and PGE2, Am. J. Physiol. 240: F311 (1981).PubMedGoogle Scholar
  6. 6.
    T. P. Dousa, B. A. Jackson, and R. M. Edwards. Cellular action of vasopressin in medullary collecting tubules and in ascending limbs of Henle’s loop, in: “Antidiuretic Hormone,” S. Yoshida, L. Share, and K. Yagi, ed., Japan Scientific Societies Press, Tokyo (1980).Google Scholar
  7. 7.
    F. Morel, D. Chabardes, and M. Imbert-Teboul, Methodology for enzymatic studies of isolated tubular segments: Adenylate cyclase, in: “Methods in Pharmacology: Renal Pharmacology,” M. Martinez-Maldonado, ed., Plenum Press, New York (1976).Google Scholar
  8. 8.
    J. J. LeMasters, and C. R. Hackenbrock, Firefly luciferase assay for ATP production by mitochondria, in: “Methods in Enzymology,” M. A. DeLuca, ed., Academic Press, New York (1978).Google Scholar
  9. 9.
    G. M. Kiebzak, A. N. K. Yusufi, E. Kusano, J. Werness, and T. P. Dousa, Low ATP levels in the proximal convoluted tubule of the mouse nephron, Fed. Proc. 42: 1259 (1983).Google Scholar
  10. 10.
    M. G. Brunette, D. Chabardes, M. Imbert-Teboul, A. Clique, M. Montegut, and F. Morel, Hormone-sensitive adenylate cyclase along the nephron of genetically hypophosphatemic mice, Kidney Int. 15: 357 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    S. R. Gullans, P. C. Brazy, S. P. Soltoff, V. W. Dennis, and L. J. Mandel, Metabolic inhibitors: Effects on metabolism and transport in the proximal tubule, Am. J. Physiol. 243: F133 (1982).PubMedGoogle Scholar
  12. 12.
    M. K. Drezner, and W. M. Burch, Altered activity of the nucleotide regulatory site in the parathyroid hormone-sensitive adenylate cyclase from the renal cortex of a patient with pseudohypoparathyroidism, J. Clin. Invest. 62: 1222 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    W. G. Guder, and A. Rupprecht, Hormonal regulation of gluconeogenesis in isolated rat kidney tubule fragments, in: “Use of Isolated Liver Cells and Kidney Tubules in Metabolic Studies,” J. M. Tager, H. D. Soling, and J. R. Williamson, ed., North-Holland Publishing Company, Amsterdam, (1976).Google Scholar
  14. 14.
    H. B. Burch, S. Choi, C. N. Dence, T. R. Alvey, B. R. Cole, and O. H. Lowry, Metabolic effects of large fructose loads in different parts of the rat nephron, J. Biol. Chem. 255: 8239 (1980).PubMedGoogle Scholar
  15. 15.
    C. Amiel, D. Chabardes, and C. Bailly. Effects of parathyroid hormone on the kidney: Sites and mechanisms of action, in: “Advances in Nephrology,” J. Hamburger, J. Crosnier, J. Greenfield, and M. Maxwell, ed., Year Book Medical Publishers, Inc., Chicago, (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Thomas P. Dousa
    • 1
  • Gary M. Kiebzak
    • 1
  • Ahad N. K. Yusufi
    • 1
  • Eiji Kusano
    • 1
  • Julie Braun-Werness
    • 1
  1. 1.Nephrology Research Unit, Division of Nephrology and Internal Medicine, Department of Physiology and BiophysicsMayo ClinicRochesterUSA

Personalised recommendations