Skip to main content

The Usefulness of Isolated Renal Cortical Cells to Study Phosphate Transport

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 178))

Abstract

Much of the work on the metabolic support of transport in the kidney has utilized renal homogenates, renal slices and isolated renal tubules. However, these are not ideal systems because of their limited luminal access for transport and/or their anaerobic nature. Isolated perfused kidney and microperfused tubular segments have also been used for this purpose and do not have the above disadvantages. A useful additional tool is the use of isolated renal cells in suspension, in which access to luminal transporters and diffusion of oxygen would not be limiting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Kempson, A. Colon-Otero, S.L. Ou, T.P. Dousa, Possible role of nicotinamide-adenine dinucleotide (NAD) as an intra-cellular regulator of renal phosphate transport, J. Clin. Inv. 67: 1347 (1981).

    Article  CAS  Google Scholar 

  2. H.G. and M.E. Dew, Homogeneous cell population from rabbit kidney cortex, J. Cell. Biol. 74: 780, 1977.

    Article  PubMed  Google Scholar 

  3. A. Vandewalle, B. Kopfer-Hobelsberger, H.G. Heidrich, Cortical cell populations from rabbit kidney isolated by free-flow electrophoresis: Characterization by measurement of hormone-sensitive adenylate cyclase, J. Cell. Biol. 92: 505 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. P.K. Maitra and R.W. Estabrook, A fluorometric method for the enzymic determination of glycolytic intermediates, Anal. Biochem. 7: 472 (1964).

    CAS  Google Scholar 

  5. M.M. Bradford, A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding, Anal. Chem. 72: 248 (1976).

    CAS  Google Scholar 

  6. R.S. Balaban, S.P. Soltoff, J.M. Storey, L.J. Mandel, Improved renal cortical tubule suspension: Spectrophotometric study of 02 delivery, Am. J. Physiol. 238: F50, (1980).

    PubMed  CAS  Google Scholar 

  7. U. Schmidt and W.G. Guder, Sites of enzyme activity along the nephron, Kidney Int. 9: 233 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. A. Maleque, H. Endou, C. Koseki, F. Sakai, Nephron heterogeneity: Gluconeogenesis from pyruvate in rabbit nephron, Febs Lett. 116: 154 (1980).

    Article  PubMed  CAS  Google Scholar 

  9. S.R. Gullans, P.C. Brazy, V.W. Dennis, L.J. Mandel, Interaction between gluconeogenesis and sodium transport in the proximal tubule, Kidney Int. 23: 223 (1983).

    Google Scholar 

  10. W.G. Guder and 0.H. Wieland, Metabolism of isolated kidney tubules. Additive effects of parathyroid hormone and free-fatty acids on renal gluconeogenesis, Eur. J. Biochem. 31: 69 (1972).

    Article  PubMed  CAS  Google Scholar 

  11. K. Kurokawa and S.G. Massry, Evidence for stimulation of renal gluconeogenesis by catecholamines, J. Clin. Inv. 52: 961 (1973).

    Article  CAS  Google Scholar 

  12. R. Kinne, H. Murer, E. Kinne-Safran, M. Thees, G. Sachs, Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-broder microvilli and basal-lateral plasma membranes, J. Memb. Biol. 21: 375 (1975).

    Article  CAS  Google Scholar 

  13. N. Hoffman, M. Thees, R. Kinne, Phosphate transport by isolated renal brush border vesicles, Pflug. Arch. 362: 147 (1976).

    Google Scholar 

  14. T. Bucher and H. Sies, Mitochondrial and cytosolic redox states in perfused rat liver: Methods and problems in metabolic compartmentation in “Use of isolated liver cells and kidney tubules in metabolic studies”, Eds: J.M. Tager, H.D. Soling, J.R. Williamson. Amsterdam, p. 41 (1975).

    Google Scholar 

  15. N.W. Di Tullio, C.E. Berkoff, B. Blank, V, Kostos, E.J. Stack, H.L. Saunders, 3-Mercaptopicolinic acid, an inhibitor of gluconeogenesis, Biochem. J. 138: 387 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Tessitore, N., Sakhrani, L.M., Massry, S.G. (1984). The Usefulness of Isolated Renal Cortical Cells to Study Phosphate Transport. In: Massry, S.G., Maschio, G., Ritz, E. (eds) Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 178. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4808-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4808-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4810-8

  • Online ISBN: 978-1-4684-4808-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics