The Biochemical Modifications of the Brush Border Membrane Induced by Vitamin D and Parathyroid Hormone in their Actions on Phosphate Transport

  • Keith Hruska
  • Brenda Kurnik
  • Masaharu Tsutsumi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 178)


Since the development of techniques for the preparation and isolation of brush border membrane vesicles (BBMV),1,2 from the luminal cell membrane of renal tubular epthelial cells considerable progress has been made in our understanding of renal tubular cell phosphate transport. A sodium dependent co-transport system capable of moving phosphate uphill against an electrochemical gradient has been characterized in BBMV. The stoichiometry of the carrier mechanism remains controversial. According to one report, it is either 2Na+:HPO 4 −2 or Na+:H2PO4−, dependent upon the charge of the phosphate species present in the bathing fluid, and phosphate transfer is electroneutral.3 However, others have reported that at pH 6 the stoichiometry is 2Na:H2PO4− and the carrier may be electrogenic at low pH.4,5 Carrier activity increases as the pH of the medium is increased in the range of 6.0–8.5.3–5 Thus, a mechanism of secondary active phosphate transport in the renal tubular brush border membrane (BBM) has been partially characterized.


Brush Border Membrane Phosphate Transport cAMP Dependent Protein Kinase Phosphate Uptake Hypotonic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Booth and A. J. Kenny, A rapid method for the purification of microvilli from rabbit kidney, Biochem. J. 142: 575, (1974).PubMedGoogle Scholar
  2. 2.
    C. Evers, W. Haase, H. Murer and R. Kinne, Properties of brush border vesicles isolated from rat kidney cortex by calcium precipitation, J. Memb. Biochem. 1: 203 (1978).CrossRefGoogle Scholar
  3. 3.
    L. Cheng and B. Sacktor, Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles, J. Biol. Chem. 256: 1556 (1981).PubMedGoogle Scholar
  4. 4.
    N. Hoffmann, M. Thees and R. Kinne, Phosphate transport by isolated renal brush border vesicles, Pflugers Arch. 362: 147 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Burckhardt, H. Stern and H. Murer, The influence of pH on phosphate transport into rat renal brush border membrane vesicles, Pflugers Arch 390: 191 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Stoll, R. Kinne and H. Murer, Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles, Biochem. J. 180: 465 (1979).PubMedGoogle Scholar
  7. 7.
    K. A. Hruska and M. R. Hammerman, Parathyroid hormone inhibition of phosphate transport in renal brush border vesicles from phosphate depleted dogs, Biochim. Biophys. Acta 645: 351 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Murer, C. Evers, R. Stoll and R. Kinne, The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane, in: “Current Problems in Clinical Biochemistry,” W. G. Guder and W. Schmidt, eds., Hans Hubor Publishers, Bern (1979).Google Scholar
  9. 9.
    M. R. Hammerman, I. E. Karl and K. A. Hruska, Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone, Biochim. Biophys. Acta 603: 322 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    T. P. Dousa and S. A. Kempson, Regulation of renal brush border membrane transport of phosphate, Mineral Electrolyte Metab. 7: 113 (1982).Google Scholar
  11. 11.
    R. Kinne and I. L. Schwartz, Isolated membrane vesicles in the evaluation of the nature, localization, and regulation of renal transport processes, Kidney Int. 14: 547 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    M. R. Hammerman and K. A. Hruska, Cyclic AMP-dependent protein phosphorylation in canine renal brush-border membrane vesicles is associated with decreased phosphate transport, J. Biol. Chem. 257: 992 (1982).PubMedGoogle Scholar
  13. 13.
    W. Haase, A. Schafer, H. Murer and R. Kinne, Studies on the orientation of brush border membrane vesicles, Biochem. J. 172: 57 (1978).PubMedGoogle Scholar
  14. 14.
    K. A. Hruska, S. C. Mills, S. Khalifa and M. R. Hammerman, Phosphorylation of renal brush-border membrane vesicles. Effect on calcium uptake and membrane content of polyphosphoinositides, J. Biol. Chem. 258: 2501 (1983).PubMedGoogle Scholar
  15. 15.
    T. A. Noland, Jr. and H. L. Henry, Parathyroid hormone, vitamin D and the regulation of protein phosphorylation in chick kidney cells, in: “Vitamin D. Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism,” A. W. Norman, K. Schaefer, D. V. Herrath and H.-G. Grigoleit, eds., Walter de Gruyter & Co., Berlin (1982).Google Scholar
  16. 16.
    M. R. Hammerman, V. A. Hansen and J. J. Morrissey, Cyclic AMP-dependent protein phosphorylation and dephosphorylation alter phosphate transport in canine renal brush border vesicles, Biochim. Biophys. Acta 755: 10 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    L. R. Forte, G. A. Nickols and C. S. Anast, Renal adenylate cyclase and the interrelationship between parrathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclic 3’,S’-monophosphate excretion, J. Clin. Invest. 57: 559 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    L. R. Forte, S. G. Langeluttig, R. E. Poelling and M. L. Thomas, Renal parathyroid hormone receptors in the chick: downregulation in secondary hyperparathyroid animal models, Am. J. Physiol. 242: E154 (1982).PubMedGoogle Scholar
  19. 19.
    J-P. Bonjour, C. Preston and H. Fleisch, Effect of 1,25-dihydroxyvitamin D3 on the renal handling of Pi in thyroparathyroidectomized rats, J. Clin. Invest. 60: 1419 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    R. C. Muhlbauer, J-P. Bonjour and H. Fleisch, Tubular handling of Pi localization of effects of 1,25(OH)2D3 and dietary Pi in TPTX rats, Am. J. Physiol. 241: F123 (1981).PubMedGoogle Scholar
  21. 21.
    R. Stoll, R. Kinne, H. Murer, H. Fleisch and J-P. Bonjour, Phosphate transport by rat renal brush border membrane vesicles: Influence of dietary phosphate thyroparathyroidectomy, and 1,25-Dihydroxyvitamin D3, Pflugers Arch. 380: 47 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    C. T. Liang, J. Barnes, L. Cheng, R. Balakir and B. Sacktor, Effects of 1,25-(OH)2D3 administered in vivo on phosphate uptake by isolated chick renal cells, Am. J. Physiol. 242: C312 (1982).PubMedGoogle Scholar
  23. 23.
    C. T. Liang, J. Barnes, R. Balakir, L. Cheng and B. Sacktor, In vitro stimulation of phosphate uptake in isolated chick renal cells by 1,25-dihydroxycholecalciferol, Proc. Natl. Acad. Sci. 79:3532 (1982).Google Scholar
  24. 24.
    H. Georgaki and J. B. Puschett, Acute effects of a “physiological” dose of 1,25-dihydroxy vitamin D3 on renal phosphate transport, Endocrine Res. Comm. 9: 135 (1982).CrossRefGoogle Scholar
  25. 25.
    B. Kurnik and K. A. Hruska, Effects of 1,25(OH)2D3 on phosphate transport in a normocalcemic normophosphatemic rat model of vitamin D deficiency, (Submitted for publication).Google Scholar
  26. 26.
    D. Rudack-Garcia and H. L. Henry, Effect of vitamin D status on cyclic AMP-dependent protein kinase activity and its heat-stable inhibitor in chick kidney, J. Biol. Chem. 256: 10781 (1981).PubMedGoogle Scholar
  27. 27.
    A. N. K. Yusufi, M. G. Low, S. T. Turner and T. P. Dousa, Selective removal of alkaline phosphatase from renal brush-border membrane and sodium-dependent brush-border membrane transport, J. Biol. Chem. 258: 5695 (1983).PubMedGoogle Scholar
  28. 28.
    H. R. De Jonge, W. E. J. M. Ghijsen and C. H. Van Os, Phosphorylated intermediates of Cat+-ATPase and alkaline phosphatase in plasma membranes from rat duodenal epithelium, Biochim. Biophys. Acta 647: 140 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Biber, V. Scalera and H. Murer, Protein phosphorylation in proximal tubular brush-border membranes, Adv. Exp. Med. Biol. 151: 47 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Khalifa, S. Mills and K. A. Hruska, Stimulation of calcium uptake by parathyroid hormone in renal brush border membrane vesicles: relationship to membrane phosphorylation, J. Biol. Chem. (submitted for publication).Google Scholar
  31. 31.
    O. Fontaine, T. Matsumoto, D. B. P. Goodman and H. Rasmussen, Liponomic control of Ca2+ transport: Relationship to mechanism of action of 1,25-dihydroxyvitamin D3, Proc. Natl. Acad. Sci. 78: 1751 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Matsumoto, O. Fontaine and H. Rasmussen, Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in chick duodenal mucosal cell, J. Biol. Chem. 256: 3354 (1981).PubMedGoogle Scholar
  33. 33.
    D. Kreutter, T. Matsumoto, R. Peckham, K. Zawalich, W. H. Wen, D. T. Zolock and H. Rasmussen, The effect of essential fatty acid deficiency on the stimulation of intestinal calcium transport by 1,25-dihydroxyvitamin D3, J. Biol. Chem. 258: 4977 (1983).PubMedGoogle Scholar
  34. 34.
    G. W. Snedecor and W. G. Cochran, Statistical Methods, The Iowa State University Press, Ames (1967).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Keith Hruska
    • 1
  • Brenda Kurnik
    • 1
  • Masaharu Tsutsumi
    • 1
  1. 1.Renal DivisionJewish Hospital/Washington UniversitySt. LouisUSA

Personalised recommendations