Advertisement

Differential Regulation of Putative M1/M2 Muscarinic Receptors: Implications for Different Receptor-Effector Coupling Mechanisms

  • Thomas W. Vickroy
  • Mark Watson
  • Henry I. Yamamura
  • William R. Roeske
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)

Abstract

This chapter focuses upon results from our recent studies concerning the drug specificities and regulatory profiles of high-affinity muscarinic agonist binding site subtypes. The data are presented in conjunction with other evidence for muscarinic receptor subtypes and a significant portion of the discussion emphasizes the potential involvement of distinct receptor-effector coupling mechanisms for these subtypes. Other reviews relevant to this topic are currently available (1–4).

Keywords

Adenylate Cyclase Muscarinic Receptor Guanine Nucleotide Muscarinic Agonist Agonist Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. J. M. Birdsall, E. C. Hulme, R. Hammer, and J. S. Stockton, Subclasses of muscarinic receptors, in: “Psychopharmacology and Biochemistry of Neurotransmitter Receptors,” H. I. Yamamura, R. W. Olsen, and E. Usdin, eds., Elsevier/ North-Holland, New York, p. 97 (1980).Google Scholar
  2. 2.
    F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, Muscarinic receptor: regulation by guanine nucleotides, ions, and N-ethyl-maleimide, Fed. Proc. 40: 153 (1981).Google Scholar
  3. 3.
    W. R. Roeske, F. J. Ehlert, D. S. Barritt, K. Yamanaka, L. B. Rosenberger, S. Yamada, S. Yamamura, and H. I. Yamamura, Recent advances in muscarinic receptor heterogeneity and regulation, in: “Molecular Pharmacology of Neurotransmitter Receptors,” T. Segawa, H. I. Yamamura, and K. Kuriyama, eds., Raven Press, New York (1983).Google Scholar
  4. 4.
    F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, The nature of muscarinic receptor binding, in: “Handbook of Psychopharmacology,” L. Iversen, S. D. Iversen, and S. H. Snyder, eds., Plenum, New York (1983).Google Scholar
  5. 5.
    H. H. Dale, The action of certain ester and ethers of choline and their relation to muscarine, J. Pharmacol. Exp. Ther. 6: 147 (1914).Google Scholar
  6. 6.
    O. Loewi, Uber humorale ubertragbarkeit der herznervenwirkung, Pflugers Arch. Gen. Physiol. 189: 239 (1921).CrossRefGoogle Scholar
  7. 7.
    A. P. Roszkowski, An unusual type of ganglionic stimulant, J. Pharmacol. Exp. Ther. 132: 156 (1961).Google Scholar
  8. 8.
    R. K. Goyal and S. Rattan, Neurohumoral hormonal, and drug receptors for the lower esophageal sphincter, Gastroenterol. 74: 598 (1978).Google Scholar
  9. 9.
    B. H. Jaup, R. W. Stockbrugger, and G. Dotevall, Comparison of the action of pirenzepine and 1-hyoscyamine on gastric acid secretion and other muscarinic effects, Scand. J. Gastroenterol. (suppl.) 66: 89 (1980).Google Scholar
  10. 10.
    R. Hammer, C. P. Berrie, N. J. M. Birdsall, A. S. C. Burgen, and E. C. Hulme, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283: 90 (1980).CrossRefGoogle Scholar
  11. 11.
    R. Hammer and A. Giachetti, Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization, Life Sci. 31: 2991 (1982).CrossRefGoogle Scholar
  12. 12.
    M. P. Caulfield, G. A. Higgins, and D. W. Straughan, Central administration of the muscarinic receptor subtype-selective antagonist pirenzepine selectively impairs passive avoidance learning in the mouse, J. Pharm. Pharmacol. 35: 131 (1983).CrossRefGoogle Scholar
  13. 13.
    M. Watson, H. I. Yamamura, and W. R. Roeske, A unique regulatory profile and regional distribution of [3H]pirenzepine binding in the rat provide evidence for distinct M7 and M2 muscarinic receptor subtypes, Life Sci. 32: 3011 (1983).CrossRefGoogle Scholar
  14. 14.
    R. B. Barlow, K. J. Berry, P. A. M. Glenton, N. M. Nikolaou, and K. S. Soh, A comparison of affinity constants for muscarinic-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29° C and 37° C, Brit. J. Pharmacol. 58: 613 (1976).CrossRefGoogle Scholar
  15. 15.
    D. A. Brown, A. Forward, and S. Marsh, Antagonist discrimination between ganglionic and ileal muscarinic receptors, Brit. J. Pharmacol. 71: 362 (1980).CrossRefGoogle Scholar
  16. 16.
    M. Watson, W. R. Roeske, and H. I. Yamamura, [3H]Pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex, Life Sci. 31: 2019 (1982).CrossRefGoogle Scholar
  17. 17.
    M. Watson, W. R. Roeske, P. C. Johnson, and H. I. Yamamura, [3H]Pirenzepine identifies putative M1, Brain Res., in press.Google Scholar
  18. 18.
    H. I. Yamamura, J. K. Wamsley, P. Deshmukh, and W. R. Roeske, Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using [3H]pirenzepine, Eur. J. Pharmacol. 91: 1983 (1983).CrossRefGoogle Scholar
  19. 19.
    N. J. M. Birdsall, A. S. V. Burgen, C. R. Hiley, and E. C. Hulme, Binding of agonists and antagonists to muscarinic receptors, J. Supramol. Struc. 4: 367 (1976).CrossRefGoogle Scholar
  20. 20.
    N. J. M. Birdsall, A. S. C. Burgen, and E. C. Hulme, The binding of agonists to brain muscarinic receptors, Mol. Pharmacol. 14: 723 (1978).Google Scholar
  21. 21.
    F. J. Ehlert, Y. Dumont, W. R. Roeske, and H. I. Yamamura, Muscarinic receptor binding in rat brain using the agonist [3H]cismethyldioxolane, Life Sci. 26: 961 (1980).CrossRefGoogle Scholar
  22. 22.
    F. J. Ehlert, H. I. Yamamura, D. J. Triggle, and W. R. Roeske, The influence of guanyl-5’-yl imidodiphosphate and sodium chloride on the binding of the muscarinic agonist, [3H]cismethyldioxolane, Eur. J. Pharmacol. 61: 317 (1980).CrossRefGoogle Scholar
  23. 23.
    F. J. Ehlert, W. R. Roeske, and H. I. Yamamura, Regulation of muscarinic receptor binding by guanine nucleotides and N-ethyl-maleimide, J. Supramol. Struct. 14: 149 (1980).CrossRefGoogle Scholar
  24. 24.
    M. M. Hosey, Regulation of antagonist binding to cardiac muscarinic receptors, Biochem. Biophys. Res. Commun. 107: 314 (1982).CrossRefGoogle Scholar
  25. 25.
    T. W. Vickroy, W. R. Roeske, and H. I.Yamamura, Characterization of a high affinity muscarinic agonist binding site by a rapid filtration technique with [3H]cismethyldioxolane, Fed. Proc. 42: 1146 (1983).Google Scholar
  26. 26.
    K. J. Chang, R. C. Deth, and D. J. Triggle, Structural parameters determining cholinergic and anticholinergic activities in a series of 1,3-dioxolanes, J. Med. Chem. 15: 243 (1972).CrossRefGoogle Scholar
  27. 27.
    T. W. Vickroy, H. I. Yamamura, and W. R. Roeske, Differential regulation of high-affinity agonist binding to muscarinic sites in the rat heart, cerebellum, and cerebral cortex, Biochem. Biophys. Res. Commun., in press.Google Scholar
  28. 28.
    J. M. Stockton, N. J. M. Birdsall, A. S. V. Burgen, and E. C. Hulme, Modification of binding properties of muscarinic receptors by gallamine, Mol. Pharmacol. 23: 551 (1983).Google Scholar
  29. 29.
    J. Dunlap and J. H. Brown, Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium, Mol. Pharmacol. 24: 15 (1983).Google Scholar
  30. 30.
    A. Bartolini, R. Bartolini, and E. F. Domino, Effects of physostigmine on brain acetylcholine content and release, Neuropharmacology 12: 15 (1973).CrossRefGoogle Scholar
  31. 31.
    F. J. Rathbun and J. T. Hamilton, Effect of gallamine on cholinergic receptor, Can. Anaesth. Soc. J. 17: 574 (1970).CrossRefGoogle Scholar
  32. 32.
    A. L. Clark and F. Mitchelson, The inhibitory effect of gallamine on muscarinic receptors, Brit. J. Pharmacol. 14: 323 (1976).CrossRefGoogle Scholar
  33. 33.
    C. P. Berrie, N. J. M. Birdsall, A. S. C. Burgen and E. C. Hulme, Guanine nucleotides modulate muscarinic receptor binding in the heart, Biochem. Biophys. Res. Commun. 87: 1000 (1979).CrossRefGoogle Scholar
  34. 34.
    L. B. Rosenberger, W. R. Roeske, and H. I. Yamamura, The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue, Eur. J. Pharmacol. 56: 179 (1979).CrossRefGoogle Scholar
  35. 35.
    L. B. Rosenberger, H. I. Yamamura, and W. R. Roeske, Cardiac muscarinic cholinergic receptor binding is regulated by Na and guanyl nucleotides, J. Biol. Chem. 255: 820 (1980).Google Scholar
  36. 36.
    J.-W. Wei and P. V. Sulakhe, Cardiac muscarinic cholinergic receptor sites: opposing regulation by divalent cations and guanine nucleotides of receptor-agonist interaction, Eur. J. Pharmacol. 62: 345 (1980).CrossRefGoogle Scholar
  37. 37.
    J.-W. Wei and P. V. Sulakhe, Requirement for sulfhydryl groups in the differential effects of magnesium ion and GTP on agonist binding of muscarinic cholinergic receptor sites in rat atrial membrane fraction, Naunyn-Schmiedeberg’s Arch. Pharmacol. 314: 51 (1980).CrossRefGoogle Scholar
  38. 38.
    R. S. Aronstam, L. G. Akood, and W. Hoss, Influence of sulfhydryl reagents and heavy metals on the functional state of the muscarinic acetylcholine receptor in rat brain, Mol. Pharmacol. 14: 575 (1978).Google Scholar
  39. 39.
    S. J. Korn, M. W. Martin, and T. K. Harden, N-ethylmaleimideinduced alteration in the interaction of agonists with muscarinic cholinergic receptors of rat brain, J. Pharmacol. Exp. Ther. 224: 118 (1983).Google Scholar
  40. 40.
    M. Waelbroeck, P. Robberecht, P. Chatelain, and J. Christophe, Rat cardiac muscarinic receptors: I. Effects of guanine nucleotides on high-and low-affinity binding sites, Mol. Pharmacol. 21: 581 (1982).Google Scholar
  41. 41.
    T. W. Vickroy, M. Watson, H. I. Yamamura, and W. R. Roeske, Agonist binding to multiple muscarinic receptors, Fed. Proc., in press.Google Scholar
  42. 42.
    M. Rodbell, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17 (1980).CrossRefGoogle Scholar
  43. 43.
    E. M. Ross and A. G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).CrossRefGoogle Scholar
  44. 44.
    F. Murad, Y.-M. Chi, J. W. Rall, and E. W. Sutherland, Adenyl cyclase III. The effect of catecholamines and choline esters on the formation of adenosine 3’-5’ phosphate by preparations from cardiac muscle and liver, J. Biol. Chem. 237: 1233 (1962).Google Scholar
  45. 45.
    A. M. Watanabe, M. M. McConnaughey, R. A. Strawbr43ge, J. W. Fleming, L. R. Jones, and H. R. Besch, Muscarinic cholinergic receptor modulation of ß-adrenergic receptor affinity for catecholamines, J. Biol. Chem. 253: 4833 (1978).Google Scholar
  46. 46.
    K. H. Jacobs, K. Aktories, and G. Schultz, GTP-dependent inhibition of cardiac adenylate cyclase by mascarinic cholinergic agonists, Naunyn-Schmiedeberg’s Arch. Pharmaocl. 310: 113 (1979).CrossRefGoogle Scholar
  47. 47.
    O. Hazeki and M. Ui, Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells, J. Biol. Chem. 256: 2856 (1981).Google Scholar
  48. 48.
    W. R. Roeske and H. I. Yamamura, Adrenergic-cholinergic interactions, in: “Adrenoceptors and Catecholamine Action, Part B,” G. Kunos, ed., John Wiley and Sons, New York (1983).Google Scholar
  49. 49.
    T. Katada and M. Ui, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of membrane protein, Proc. Natl. Acad. Sci. USA 79: 3129 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Thomas W. Vickroy
    • 1
  • Mark Watson
    • 1
  • Henry I. Yamamura
    • 1
  • William R. Roeske
    • 1
  1. 1.Departments of Pharmacology and Internal MedicineUniversity of Arizona Health Sciences CenterTucsonUSA

Personalised recommendations