Genetic and Functional Studies of Guanine Nucleotide-Binding Regulatory Proteins

  • Henry R. Bourne
  • Cornelis Van Dop
  • Gerald F. Casperson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)


Recent research in many laboratories is rapidly elucidating the structure and functions of a family of GTP-binding regulatory proteins, each of which carries information across a membrane from a receptor protein to an effector enzyme. The family includes three known members: Ns, Ni, and retinal transducin. Adenylate cyclase serves as the effector for two of these proteins, which stimulate (Ns) or inhibit (Ni) the enzyme when triggered by specific receptors for hormones or neurotransmitters. Transducin, a protein found in high abundance in retinal rod outer segments, couples photoexcitation of rhodopsin to stimulation of a specific cGMP phosphodiesterase (PDE).


Adenylate Cyclase Cholera Toxin Pertussis Toxin Coupling Protein Effector Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Stryer, J. B. Hurley, and B. K.-K. Fung, Transducin: an amplifier protein in vision, Trends Biochem. Sci. 6: 245 (1981).CrossRefGoogle Scholar
  2. 2.
    M. W. Bitensky, G. L. Wheeler, A. Yamazaki, M. W. Rasenick, and P. J. Stein, Cyclic-nucleotide metabolism in vertebrate photoreceptors: A remarkable analogy and an unraveling enigma, Current Topics Membranes and Transport 15: 237 (1981).CrossRefGoogle Scholar
  3. 3.
    D. R. Manning and A. G. Gilman, The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide binding proteins, J. Biol. Chem. 258: 7059 (1983).Google Scholar
  4. 4.
    M. D. Smigel, J. K. Northup, and A. G. Gilman, Characteristics of the guanine nucleotide-binding regulatory component of adenylate cyclase, Recent Progr. Hormone Res. 38: 601 (1982).Google Scholar
  5. 5.
    G. L. Johnson, H. R. Kaslow, Z. Farfel, and H. R. Bourne, Genetic analysis of hormone-sensitive adenylate cyclase, in: “Advances in Cyclic Nucleotide Research,” Vol. 13, P. Greengard and G. A. Robison, eds., Raven Press, New York, p. 1 (1980).Google Scholar
  6. 6.
    H. R. Bourne, P. Coffino, and G. M. Tomkins, Selection of a variant lymphoma cell deficient in adenylate cyclase, Science 187: 750 (1975).CrossRefGoogle Scholar
  7. 7.
    E. M. Ross and A. G. Gilman, Resolution of some components of adenylate cyclase necessary for catalytic activity, J. Biol. Chem. 252: 6966 (1977).Google Scholar
  8. 8.
    D. M. Gill and R. Meren, ADP-ribosylation of membrane proteins catalyzed by cholera toxin: Basis of the activation of adenylate cyclase, Proc. Nat. Acad. Sci. USA 75: 3050 (1978).CrossRefGoogle Scholar
  9. 9.
    D. Cassel and T. Pfeuffer, Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. USA 75: 2669 (1978).CrossRefGoogle Scholar
  10. 10.
    G. L. Johnson, H. R. Kaslow, and H. R. Bourne, Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase, J. Biol. Chem. 253: 7120 (1978).Google Scholar
  11. 11.
    T. Haga, E. M. Ross, H. J. Anderson, and A. G. Gilman, Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 lymphoma cells, Proc. Natl. Acad. Sci. USA 74: 2016 (1977).CrossRefGoogle Scholar
  12. 12.
    M. R. Salomon and H. R. Bourne, Novel S49 lymphoma variants with aberrant cyclic AMP metabolism, Mol. Pharmacol. 19: 109 (1981).Google Scholar
  13. 13.
    H. R. Bourne, B. Beiderman, F. Steinberg, and V. M. Brothers, Three adenylate cyclase phenotypes in S49 lymphoma cells produced by mutations of one gene, Mol. Pharmacol. 22: 204 (1982).Google Scholar
  14. 14.
    L. S. Schleifer, J. C. Garrison, P. C. Sternweis, J. K. Northup, and A. G. Gilman, The regulatory component of adenylate cyclase from uncoupled S49 lymphoma cells differs in charge from the wild type protein, J. Biol. Chem. 255: 2641 (1980).Google Scholar
  15. 15.
    Z. Farfel, A. S. Brickman, H. R. Kaslow, V. M. Brothers, and H. R. Bourne, Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism, New Engl. J. Med. 303: 237 (1980).CrossRefGoogle Scholar
  16. 16.
    M. A. Levine, R. W. Downs, M. Singer, S. J. Marx, G. D. Aurbach and A. M. Spiegel, Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism, Biochem. Biophys. Res. Comm. 94: 1319 (1980).CrossRefGoogle Scholar
  17. 17.
    Z. Farfel, and H. R. Bourne, Pseudohypoparathyroidism: Mutation affecting adenylate cyclase, Mineral Electrolyte Metab. 8: 227 (1982).Google Scholar
  18. 18.
    A. M. Spiegel, M. A. Levine, G. D. Aurbach, R. W. Downs, Jr., S. J. Marx, R. D. Lasker, A. M. Moses, and N. A. Breslau, Deficiency of hormone receptor-adenylate cyclase coupling protein: basis for hormone resistance in pseudohypoparathyroidism, Am. J. Physiol. 243: E37 (1982).Google Scholar
  19. 19.
    Z. Farfel ‘and H. R. Bourne, Deficient activity of receptorcyclase coupling protein in platelets of patients with pseudohypoparathyroidism, J. Clin. Endocrinol. Metab. 51: 1202 (1980).CrossRefGoogle Scholar
  20. 20.
    H. R. Bourne, H. R. Kaslow, A. S. Brickman, and Z. Fargel, Fibroblast defect in pseudohypoparathyroidism, type I: Reduced activity of receptor-cyclase coupling protein, J. Clin. Endocrinol. Metab. 53: 636 (1981).CrossRefGoogle Scholar
  21. 21.
    Z. Farfel, M. E. Abood, A. S. Brickman, and H. R. Bourne, Deficient activity of receptor-cyclase coupling protein in transformed lymphoblasts of patients with pseudohypoparathyroidism, Type I, J. Clin. Endocrinol. Metab. 55: 113 (1982).CrossRefGoogle Scholar
  22. 22.
    R. W. Downs, Jr., M. A. Levine, M. K. Drezner, W. M. Burch, Jr. and A. M. Spiegel, Deficient adenylate cyclase regulatory protein in renal membranes from a patient with pseudohypoparathyroidism, J. Clin. Invest. 71: 231 (1983).CrossRefGoogle Scholar
  23. 23.
    Z. Farfel, V. M. Brothers, A. S. Brickman, F. Conte, R. Neer, and H. R. Bourne, Pseudohypoparathyroidism: Inheritance of deficient receptor-cyclase coupling activity, Proc. Natl. Acad. Sci. USA 78: 3098 (1981).CrossRefGoogle Scholar
  24. 24.
    G. F. Casperson, N. Walker, A. R. Brasier, and H. R. Bourne, A guanine nucleotide sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae, J. Biol. Chem. 258: 7911 (1983).Google Scholar
  25. 25.
    K. Matsumoto, I. Uno, Y. Oshima, and T. Ishikawa, Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 79: 2355 (1982).CrossRefGoogle Scholar
  26. 26.
    G. B. Rosenberg and M. L. Pall, Characterization of an ATP-Mg2+-dependent guanine nucleotide-stimulated adenylate cyclase from Neurospora crassa, Arch. Biochem. Biophys. 221: 243 (1983).CrossRefGoogle Scholar
  27. 27.
    G. B. Rosenberg and M. L. Pall, Reconstitution of adenylate cyclase in Neurospora from two components of the enzyme, Arch. Biochem. Biophys. 221: 254 (1983).CrossRefGoogle Scholar
  28. 28.
    O. Hazeki and M. Ui, Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated rat heart cells, J. Biol. Chem. 256: 2856 (1981).Google Scholar
  29. 29.
    T. Katada and M. Ui, Islet-activating protein. A modifier of receptor-mediated regulation of rat islet adenylate cyclase, J. Biol. Chem. 256: 8310 (1981).Google Scholar
  30. 30.
    T. Katada and M. Ui, ADP-ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity, J. Biol. Chem. 257: 7210 (1982).Google Scholar
  31. 31.
    G. M. Bokoch, T. Katada, J. K. Northup, E. L. Hewlett, and A. G. Gilman, Identification of the predominant substrate for ADP-ribosylation by islet-activating protein, J. Biol. Chem. 258: 2072 (1983).Google Scholar
  32. 32.
    J. Codina, J. Hildebrandt, R. Iyengar, and L. Birnbaumer, Pertussis toxin substrate, the putative N. component of adenylate cyclases, in an aß heterodimer regulated by guanine nucleotide and magnesium, Proc. Natl. Acad. Sci. USA, in press, 1983.Google Scholar
  33. 33.
    M. E. Abood, J. B. Hurley, M.-C. Pappone, H. R. Bourne, and L. Stryer, Functional homology between signal-coupling proteins: Cholera toxin inactivates the GTPase activity of transducin, J. Biol. Chem. 257: 10540 (1982).Google Scholar
  34. 34.
    D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site, Proc. Natl. Acad. Sci. USA 74: 3307 (1977).CrossRefGoogle Scholar
  35. 35.
    K. Enomoto and D. M. Gill, Cholera toxin activation of adenylate cyclase. Roles of nucleoside triphosphates and a macromolecular factor in the ADP ribosylation of the GTP-dependent regulatory component, J. Biol. Chem. 255: 1252 (1980).Google Scholar
  36. 36.
    B. A. Brown and J. W. Bodley, Primary structure at the site in beef and wheat elongation factor 2 of ADP-ribosylation by diptheria toxin, FEBS Lett. 103: 253 (1979).CrossRefGoogle Scholar
  37. 37.
    D. H. Spackman, W. H. Stein and S. Moore, Automatic recording apparatus for use in the chromatography of amino acids, Anal. Chem. 30: 1190 (1958).CrossRefGoogle Scholar
  38. 38.
    S. Nakaya, J. Moss, and M. Vaughan, Effects of nucleoside triphosphates on choleragen-activated brain adenylate cyclase, Biochemistry 19: 4871 (1980).CrossRefGoogle Scholar
  39. 39.
    R. J. Collier, Structure and activity of diptheria toxin, in: “ADP-Ribosylation Reactions,” Academic Press, New York, p. 575 (1982).Google Scholar
  40. 40.
    B. G. Van Ness, J. B. Howard and J. W. Bodley, ADP-ribosylation of elongation factor 2 by diptheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products, J. Biol. Chem. 255: 10710 (1980).Google Scholar
  41. 41.
    C. G. Goff, Chemical structure of a modification of the Escherichia coli ribonucleic acid polymerase α polypeptides induced by bacteriophage T4 infection, J. Biol. Chem. 249: 6181 (1974).Google Scholar
  42. 42.
    H. Kurose, T. Katada, T. Amano, and M. Ui, Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells, J. Biol. Chem. 258: 4870 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Henry R. Bourne
    • 1
  • Cornelis Van Dop
    • 1
  • Gerald F. Casperson
    • 1
  1. 1.Department of Pharmacology and Medicine and the Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations