Regulation of the Catalytic Unit of Adenylate Cyclase System in Rat Brain

  • S. Ishibashi
  • T. Kurokawa
  • K. Higashi
  • T. Dan’ura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)


It is well known that the adenylate cyclase system in the cell membrane consists of the ligand receptor, the guanine nucleotide-binding regulatory unit (G/F), and the catalytic unit which catalyzes the formation of cyclic AMP from ATP (1,2). As compared with the former two, the catalytic unit has been less characterized, principally because of instability of this protein after solubilization with the use of detergents. Nevertheless, many efforts have gradually clarified the nature of this protein. Among them, success in separation of the catalytic unit from G/F (3) and use of the cyc mutant of S49 lymphoma cell which apparently lacks a functional G/F protein (4) have facilitated the clarification. As a result, the molecular size of the catalytic unit has been estimated to be 170,000–220,000 in several tissues (5,6).


Adenylate Cyclase Divalent Cation Adenylate Cyclase Activity Synaptic Membrane Sodium Cholate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Rodbell, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284: 17 (1980).CrossRefGoogle Scholar
  2. 2.
    L. E. Limbird, Activation and attenuation of adenylate cyclase, Biochem. J. 195: 1 (1981).Google Scholar
  3. 3.
    S. Strittmatter and E. J. Neer, Properties of the separated catalytic and regulatory units of brain adenylate cyclase, Proc. Natl. Acad. Sci. USA 77: 6377 (1980).CrossRefGoogle Scholar
  4. 4.
    E. M. Ross, Physical separation of the catalytic and regulatory proteins of hepatic adenylate cyclase, J. Biol. Chem. 256: 1949 (1981).Google Scholar
  5. 5.
    T. Haga, K. Haga, and A. G. Gilman, Hydrodynamic properties of the ß-adrenergic receptor and adenylate cyclase from wild type and variant S49 lymphoma cells, J. Biol. Chem. 252: 5776 (1977).Google Scholar
  6. 6.
    E. J. Near and R. S. Salter, Modification of adenylate cyclase structure and function by ammonium sulfate, J. Biol. Chem. 256: 5497 (1981).Google Scholar
  7. 7.
    R. D. Lasker, R. W. Downs, Jr., and G. D. Aurbach, Calcium inhibition of adenylate cyclase: Studies in turkey erythrocytes and S49 cyc cell membrane, Arch. Biochem. Biophys. 216: 345 (1982).CrossRefGoogle Scholar
  8. 8.
    S. G. Somkuti, J. D. Hildebrandt, J. T. Herberg, and R. Iyengar, Divalent cation regulation of adenylyl cyclase, J. Biol. Chem. 257: 6387 (1982).Google Scholar
  9. 9.
    K. B. Seamon and J. W. Daly, Forskolin: A Unique diterpene activator of cyclic AMP-generating systems, J. Cyclic Nucleotide Res. 7: 201 (1981).Google Scholar
  10. 10.
    K. Seamon and J. W. Daly, Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein, J. Biol. Chem. 256: 9799 (1981).Google Scholar
  11. 11.
    T. Pfeuffer and H. Metzger, 7–0-Hemisuccinyl-deacetyl forskolin-Sepharose: a novel affinity support for purification of adenylate cyclase, FEBS Lett. 146: 369 (1982).CrossRefGoogle Scholar
  12. 12.
    R. S. Salter, M. H. Krinks, C. B. Klee, and E. J. Neer, Calmodulin activates the isolated catalytic unit of brain adenylate cyclase, J. Biol. Chem. 256: 9830 (1981).Google Scholar
  13. 13.
    Y. Salomon, C. Londos, and M. Rodbell, A highly sensitive adenylate cyclase assay, Anal. Biochem. 58: 541 (1974).CrossRefGoogle Scholar
  14. 14.
    T. Kurokawa, M. Kurokawa, and S. Ishibashi, Anti-microtubular agents as inhibitors of desensitization to catecholamine stimulation of adenylate cyclase in Ehrlich ascites tumor cells, Biochim. Biophys. Acta 583: 467 (1979).CrossRefGoogle Scholar
  15. 15.
    D. Garbers and R. A. Johnson, Metal and metal-ATP interactions with brain and cardiac adenylate cyclases, J. Biol. Chem. 250: 8499 (1975).Google Scholar
  16. 16.
    E. J. Near, Interaction of soluble brain adenylate cyclase with manganese, J. Biol. Chem. 254: 2089 (1979).Google Scholar
  17. 17.
    D. F. Malamud, C. C. DiRusso, and J.T. Aprille, Mu1iple forms of brain adenylate cyclase: Stimulation by Mn +, Biochim. Biophys. Acta 485: 243 (1977).CrossRefGoogle Scholar
  18. 18.
    C. I,ondos, P. M. Lad, T. B. Nielsen, and M. Rodbell, Solubilization and conversion of hepatic adeylate cyclase to a form requiring MnATP as substrate, J. Supramol. Struct. 10: 31 (1979).CrossRefGoogle Scholar
  19. 19.
    K. B. Seamon, W. Padgett, and J. W. Daly, Forskolin: Unique diterpene activator of adenylate cyclise in membranes and in intact cells, Proc. Natl. Acad. Sci. USA 78: 3363 (1981).CrossRefGoogle Scholar
  20. 20.
    J. A. Awad, R. A. Johnson, K. H. Jakobs, and G. Schultz, Interaction of forskolin and adenylate cyclase, J. Biol. Chem. 258: 2960 (1983).Google Scholar
  21. 21.
    V.P. Whittaker, I. A. Michaelson, and R. J. Kirkland, The separation of synaptic vesicles from nerve-ending particles (’Synaptosomes’), Biochem. J. 90: 293 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • S. Ishibashi
    • 1
  • T. Kurokawa
    • 1
  • K. Higashi
    • 1
  • T. Dan’ura
    • 1
  1. 1.Department of Physiological ChemistryHiroshima University School of MedicineMinami-ku, Hiroshima 734Japan

Personalised recommendations