Reconstitution of the Regulatory Functions of β-Adrenergic Receptors

  • Elliott M. Ross
  • Tomiko Asano
  • Steen E. Pedersen
  • Douglas R. Brandt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)


The hormone-sensitive adenylate cyclase system acts as the intracellular effector for numerous neurotransmitters and hormones whose receptors are located on the cell surface. Multiple inhibitory and stimulatory receptors with specificities for different ligands can act simultaneously on a single target cell to modulate the activity of adenylate cyclase on the inner face of the plasma membrane. In addition to acute control, several different mechanisms exist for the long-term regulation of the enzyme, of individual receptors, and of the coupling process. Inhibitory control of adenylate cyclase is discussed by Drs. Ui and Aktories in this volume, and Harden (1) has thoroughly reviewed refractoriness and other modes of chronic regulation of adenylate cyclase recently. Here, we will discuss the biochemical events that couple transmitter binding to its receptor with the stimulation of adenylate cyclase.


Adenylate Cyclase Guanine Nucleotide Adenylate Cyclase Activity GTPase Activity Phospholipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. K. Harden, Agonist-induced desensitization of the ß-adrenergíc receptor-linked adenylate cyclase, Pharmacol. Rev. 35: 5 (1983).Google Scholar
  2. 2.
    M. Rodbell, L. Birnbaumer, S. L. Pohl, and H. M. J. Krans, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action, J. Biol. Chem. 246: 1877 (1971).Google Scholar
  3. 3.
    M. Rodbell, H. M. J. Krans, S. L. Pohl, and L. Birnbaumer, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat5liver. IV. Effects of guanyl nucleotides on binding of [125I]glucagon, J. Biol. Chem. 246: 1872 (1971).Google Scholar
  4. 4.
    M. Schramm and M. Rodbell, A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes, J. Biol. Chem. 250: 2232 (1975).Google Scholar
  5. 5.
    A. J. Blume and C. J. Foster, Neuroblastoma adenylate cyclase: role of 2-chloroadenosine, prostaglandin E, and guanine nucleotides in the regulation of activity, J. Biol. Chem. 251: 3399 (1976).Google Scholar
  6. 6.
    E. M. Ross, M. E. Maguire, T. W. Sturgill, R. L. Biltonen, and A. G. Gilman, Relationship between the ß-adrenergic receptor and adenylate cyclase. Studies of ligand binding and enzyme activity in purified membranes of S49 lymphoma cells, J. Biol. Chem. 252: 5761 (1977).Google Scholar
  7. 7.
    G. L. Johnson, T. K. Harden, and J. P. Perkins, Regulation of adenosine 3’:5’-monophosphate content of Rous sarcoma virus-transformed human astrocytoma cells, J. Biol. Chem. 253: 1465 (1978).Google Scholar
  8. 8.
    D. Cassel and Z. Selinger, Catecholamine-stimulated GTPase activity in turkey erythrocytes, Biochim. Biophys. Acta 452: 538 (1976).CrossRefGoogle Scholar
  9. 9.
    D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation by cholera toxin: an inhibition of GTP hydrolysis at the regulatory sites, Proc. Natl. Acad. Sci. USA 74: 3307 (1977).CrossRefGoogle Scholar
  10. 10.
    D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation through the ß-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP, Proc. Natl. Acad. Sci. USA 75: 4155 (1978).CrossRefGoogle Scholar
  11. 11.
    E. M. Ross and A. G. Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).CrossRefGoogle Scholar
  12. 12.
    T. Haga, K. Haga, and A. G. Gilman, Hydrodynamic properties of the ß-adrenergic receptor and adenylate cyclase from wild type and variant S49 lymphoma cells, J. Biol. Chem. 252: 5776 (1977).Google Scholar
  13. 13.
    L. E. Limbird, and R. J. Lefkowitz, Resolution of 8-adrenergic receptor binding and adenylate cyclase activity by gel exclusion chromatography, J. Biol. Chem. 252: 799 (1977).Google Scholar
  14. 14.
    T. Pfeuffer, GTP-binding proteins in membranes and the control of adenylate cyclase activity, J. Biol. Chem. 252: 7224 (1977).Google Scholar
  15. 15.
    E. M. Ross and A. G. Gilman, Resolution of some components of adenylate cyclase necessary for catalytic activity, J. Biol. Chem. 252: 6966 (1977).Google Scholar
  16. 16.
    H. R. Bourne, P. Coffino, and G. M. Tomkins, Selection of a variant lymphoma cell deficient in adenylate cyclase, Science 187: 750 (1975).CrossRefGoogle Scholar
  17. 17.
    E. M. Ross, A. C. Howlett, K. M. Ferguson, and A. G. Gilman, Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme, J. Biol. Chem. 253: 6401 (1978).Google Scholar
  18. 18.
    J. K. Northup, M. D. Smigel, and A. G. Gilman, The guanine nucleotide activating site of the regulatory component of adenylate cyclase: identification by ligand binding, J. Biol. Chem. 257: 11416 (1982).Google Scholar
  19. 19.
    P. C. Sternweis, J. K. Northup, M. D. Smigel, and A. G. Gilman, The regulatory component of adenylate cyclase: purification and properties, J. Biol. Chem. 256: 11517 (1981).Google Scholar
  20. 20.
    P. C. Sternweis and A. G. Gilman, Reconstitution of catecholamine-sensitive adenylate cyclase. Reconstitution of the uncoupled variant of the S49 lymphoma cell, J. Biol. Chem. 254: 3333 (1979).Google Scholar
  21. 21.
    E. M. Ross, S. E. Pedersen, and V.A. Florio, Hormone-sensitive adenylate cyclase: Identity, function, and regulation of protein components, Curr. Top. Membranes Transport 18: 109 (1982).CrossRefGoogle Scholar
  22. 22.
    E. M. Ross, Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase, J. Biol. Chem. 257: 10751 (1982).Google Scholar
  23. 23.
    J. W. Fleming and E. M. Ross, Reconstitution of ß-adrenergic rmptors into phospholipid vesicles: restoration of [125I]iodohydroxybenzylpindolol binding to digitonin-solubi-lized receptors, J. Cyclic Nucleotide Res. 6: 407 (1980).Google Scholar
  24. 24.
    M. G. Caron and R. J. Lefkowitz, Solubilization and characterization of the ß-adrenergic receptor binding sites of frog erythrocytes, J. Biol. Chem. 251: 2374 (1976).Google Scholar
  25. 25.
    S. E. Pedersen and E. M. Ross, Functional reconstitution of ß-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase, Proc. Natl. Acad. Sci. USA 79: 7228 (1982).CrossRefGoogle Scholar
  26. 26.
    D. R. Brandt, T. Asano, S. E. Pedersen, and E. M. Ross, Reconstitution of catecholamine-stimulated GTPase activity, Biochemistry 22: 4357 (1983).CrossRefGoogle Scholar
  27. 27.
    R. A. Cerione, B. Strulovici, J. L. Benovic, C. D. Strader, M. G. Caron, and R. J. Lefkowitz, Reconstitution of ß-adrenergic receptors in lipid vesicles: Affinity chromatography purified receptors confer catecholamine responsiveness on a heterologous adenylate cyclase system, Proc. Natl. Acad. Sci. USA 80: 4899 (1983).CrossRefGoogle Scholar
  28. 28.
    J. Kirilovsky and M. Schramm, Delipidation of a a-adrenergic receptor preparation and reconstitution by specific lipids, J. Biol. Chem. 258: 6841 (1983).Google Scholar
  29. 29.
    R. G. L. Shorr, M. W. Strohsacker, T. N. Lavin, R.J. Lefkowitz, and M. G. Caron, The ß-adrenergic receptor of the turkey erythrocyte. Molecular heterogeneity revealed by purification and photoaffinity labeling, J. Biol. Chem. 257: 12341 (1982).Google Scholar
  30. 30.
    Y. Citri and M. Schramm, Resolution, reconstitution, and kinetics of the primary action of a hormone receptor, Nature (London) 287: 297 (1980).CrossRefGoogle Scholar
  31. 31.
    Y. Citri, and M. Schramm, Probing the coupling sites of the ß-adrenergic receptor. Competition between different forms of the guanyl nucleotide binding protein for interaction with the receptor, J. Biol. Chem. 257: 13257 (1982).Google Scholar
  32. 32.
    J. K. Northup, P. C. Sternweis, M. D. Smigel, L. S. Schleifer, E. M. Ross, and A.G. Gilman, Purification of the regulatory component of adenylate cyclase, Proc. Natl. Acad. Sci. USA 77: 6516 (1980).CrossRefGoogle Scholar
  33. 33.
    M. D. Smigel, J. K. Northup, and A. G. Gilman, Characteristics of the guanine nucleotide-binding regulatory component of adenylate cyclase, Recent Prog. Horm. Res. 38: 601 (1982).Google Scholar
  34. 34.
    W. Baehr, E. A. Morita, R. J. Swanson, and M. L. Applebury, Characteristics of bovine outer segment G protein, J. Biol. Chem. 257: 6452 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Elliott M. Ross
    • 1
  • Tomiko Asano
    • 1
  • Steen E. Pedersen
    • 1
  • Douglas R. Brandt
    • 1
  1. 1.Department of PharmacologyUniversity of Texas Health Science Center at DallasDallasUSA

Personalised recommendations