Skip to main content

Role of Hormone-Sensitive GTPases in Adenylate Cylase Regulation

  • Chapter
  • First Online:
Neurotransmitter Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 175))

Abstract

A large variety of hormones and neurotransmitters transmit their regulatory signals into target cells via stimulation or inhibition of adenylate cyclase and the consequent increase or decrease of intracellular cyclic AMP levels. Because of the importance of adenylate cyclase as a signal transduction system, interest in adenylate cyclase has centered on the mechanisms and components involved in its hormonal control. The complete transduction system is composed of at least the specific stimulatory and inhibitory hormone receptors, the adenylate cyclase itself and two guanine nucleotide-binding, regulatory components, Ns and Ni, which act as coupler between stimulatory and inhibitory hormone receptors, respectively, and adenylate cyclase (1,2). Both types of hormones, adenylate cyclase stimulatory and inhibitory, have been shown to stimulate GTPase(s) in membrane preparations. In this review, the role of this hormone-stimulated GTP hydrolysis in the bidirectional regulation of adenylate cyclase will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M. Ross and A.G Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).

    Article  CAS  Google Scholar 

  2. K.H. Jakobs, K. Aktories, and G. Schultz, Mechanisms and components involved in adenylate cyclase inhibition by hormones, Adv. Cycl. Nucl. Res. in press.

    Google Scholar 

  3. D. Cassel and Z. Selinger, Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes, Biochim. Biophys. Acta 452: 538 (1976).

    CAS  Google Scholar 

  4. L.J. Pike and R.J. Lefkowitz, Activation and desensitization of ß-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes, J. Biol. Chem. 255: 6860 (1980).

    CAS  PubMed  Google Scholar 

  5. M. Lambert, M. Svoboda, and J. Christophe, Hormone-stimulated GTPase activity in rat pancreatic plasma membranes, FEBS Lett. 99: 303 (1979).

    Article  CAS  Google Scholar 

  6. N. Kimura and N. Shimada, Glucagon-stimulated GTP hydrolysis in rat liver plasma membranes, FEBS Lett. 117: 172 (1980).

    Article  CAS  Google Scholar 

  7. H.A. Lester, M.L. Steer, and A. Levitzki, Prostaglandin-stimulated GTP hydrolysis associated with activation of adenylate cyclase in human platelet membranes, Proc. Natl. Acad. Sci. USA 79: 719 (1982).

    Article  ADS  CAS  Google Scholar 

  8. D. Cassel, H. Levkovitz, and Z. Selinger, The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase, J. Cycl. Nucl. Res. 3: 393 (1977).

    CAS  Google Scholar 

  9. D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation through the ß-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP, Proc. Natl. Acad. Sci. USA 75: 4155 (1978).

    Article  ADS  CAS  Google Scholar 

  10. D. Cassel and Z. Selinger, Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5’-(y-thio)triphosphate, Biochem. Biophys. Res. Commun. 77: 868 (1977).

    Article  CAS  Google Scholar 

  11. D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site, Proc. Natl. Acad. Sci. USA 74: 3307 (1977).

    Article  ADS  CAS  Google Scholar 

  12. M. Svoboda, M. Lambert, and J. Schristophe, Distinct effects of the C-terminal octapeptide of cholecystokinin and of a cholera toxin pretreatment on the kinetics of rat pancreatic adenylate cyclase activity, Biochim. Biophys. Acta 675: 46 (1981).

    Article  CAS  Google Scholar 

  13. K. Aktories, G. Schultz, and K.H. Jakobs, Cholera toxin inhibits prostaglandin E1 but not adrenaline-induced stimulation of GTP hydrolysis in human platelet membranes, FEBS Lett. 146: 65 (1982).

    Article  CAS  Google Scholar 

  14. D. Cassel and T. Pfeuffer, Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. USA 75: 2669 (1978).

    Article  ADS  CAS  Google Scholar 

  15. T. Pfeuffer, Guanine nucleotide-controlled interactions between components of adenylate cyclase, FEBS Lett. 101: 85 (1979).

    Article  CAS  Google Scholar 

  16. K. Aktories, G. Schultz, and K.H. Jakobs, Stimulation of a low Km GTPase by inhibitors of adipocyte adenylate cyclase, Mol. Pharmacol. 21: 336 (1982).

    CAS  Google Scholar 

  17. G. Koski and W.A. Klee, Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis, Proc. Natl. Acad. Sci. USA 78: 4185 (1981).

    Article  ADS  CAS  Google Scholar 

  18. G. Koski, R.A. Streaty, and W.A. Klee, Modulation of sodium-sensitive GTPase by partial opiate agonists, J. Biol. Chem. 257: 14035 (1982).

    CAS  PubMed  Google Scholar 

  19. K. Aktories and K.H. Jakobs, Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes via a-adrenoceptors, FEBS Lett. 130: 235 (1981).

    Article  CAS  Google Scholar 

  20. K. Aktories, G. Schultz, and K.H. Jakobs, Somatostatin-induced stimulation of a high affinity GTPase in membranes of S49 lymphoma cyc-and H21a variants, Mol. Pharmacol. in press.

    Google Scholar 

  21. P. Lasch and K.H. Jakobs, Agonistic and antagonistic properties of various a-adrenergic agonists in human platelets, NaunynSchmiedeberg’s Arch. Pharmacol. 306: 119 (1979).

    CAS  Google Scholar 

  22. R. Grandt, K. Aktories, and K.H. Jakobs, Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster adipocytes, Mol. Pharmacol. 22: 320 (1982).

    CAS  Google Scholar 

  23. K. Aktories, G. Schultz, and K.H. Jakobs, Adenosine receptor-mediated stimulation of GTP hydrolysis in adipocyte membranes, Life Sci. 30: 269 (1982).

    Article  CAS  Google Scholar 

  24. K. Aktories, G. Schultz, and K.H. Jakobs, Inhibition of hamster fat cell adenylate cyclase by prostaglandin E1 and epinephrine: Requirement for GTP and sodium ions, FEBS Lett. 107: 100 (1979).

    Article  CAS  Google Scholar 

  25. A.J. Blume, D. Lichtshtein, and G. Boone, Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP, Proc. Natl. Acad. Sci. USA 76: 5626 (1979).

    Article  ADS  CAS  Google Scholar 

  26. K.H. Jakobs and G. Schultz, Different inhibitory effect of adrenaline on platelet adenylate cyclase in the presence of GTP plus cholera toxin and of stable GTP analogues, NaunynSchmiedeberg’s Arch. Pharmacol. 310: 121 (1979).

    CAS  Google Scholar 

  27. F. Probst and B. Hamprecht, Opioids, noradrenaline and GTP analogs inhibit cholera toxin-activated adenylate cyclase in neuroblastoma x glioma hybrid cells, J. Neurochem. 36: 580 (1981).

    Article  Google Scholar 

  28. T.E. Cote, C.W. Grewe, J.C. Tsuruta, R.L. Eskay, and J.W. Kebabian, D-2 dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires guanosine 5’-triphosphate, Endocrinology 110: 812 (1982).

    Article  CAS  Google Scholar 

  29. K. Aktories, G. Schultz, and K.H. Jakobs, Cholera toxin does not impair hormonal inhibition of adenylate cyclase and concomitant stimulation of a GTPase in adipocyte membranes, Biochim. Biophys. Acta 719: 58 (1982).

    Article  CAS  Google Scholar 

  30. K.H. Jakobs, Determination of the turn-off reaction for the epinephrine-inhibited human platelet adenylate cyclase, Eur. J. Biochem. 132: 125 (1983).

    Article  CAS  Google Scholar 

  31. G.L. Stiles and R.J. Lefkowitz, Hormone-sensitive adenylate cyclase: Delineation of a trypsin-sensitive site in the pathway of receptor-mediated inhibition, J. Biol. Chem. 257: 6287 (1982).

    CAS  PubMed  Google Scholar 

  32. K.H. Jakobs, R.A. Johnson, and G. Schultz, Activation of human platelet adenylate cyclase by a bovine sperm component, Biochim. Biophys. Acta 756: 369 (1983).

    Article  CAS  Google Scholar 

  33. K.H. Jakobs, P. Lasch, M. Minuth, K. Aktories, and G. Schultz, Uncoupling of a-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide, J. Biol. Chem. 257: 2829 (1982).

    CAS  PubMed  Google Scholar 

  34. K. Aktories, G. Schultz, and K.H. Jakobs, Inactivation of the guanine nucleotide regulatory site mediating inhibition of the adenylate cyclase in hamster adipocytes, Naunyn-Schmiedeberg’s Arch. Pharmacol. 321: 247 (1982).

    CAS  Google Scholar 

  35. G.L. Johnson, H.R. Kaslow, Z. Farfel, and H.R. Bourne, Genetic analysis of hormone-sensitive adenylate cyclase, Adv. Cycl. Nucl. Res. 13: 1 (1980).

    CAS  Google Scholar 

  36. J.D. Hildebrandt, J. Hanoune, and L. Birnbaumer, Guanine nucleotide inhibition of cyc S49 mouse lymphoma cell membrane adenylyl cyclase, J. Biol. Chem. 257: 14723 (1982).

    CAS  PubMed  Google Scholar 

  37. K.H. Jakobs, U. Gehring, B. Gaugler, T. Pfeuffer, and G. Schultz, Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc-variants of S49 lymphoma cells, Eur. J. Biochem. 130: 605 (1983).

    Article  CAS  Google Scholar 

  38. K.H. Jakobs and G. Schultz, Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc-variants, Proc. Natl. Acad. Sci. USA 80: 3899 (1983).

    Article  ADS  CAS  Google Scholar 

  39. K.H. Jakobs and K. Aktories, Synergistic inhibition of human platelet adenylate cyclase by stable GTP analogs and epinephrine, Biochim. Biophys. Acta in press.

    Google Scholar 

  40. T. Katada and M. Ui, Islet-activating protein: A modifier of receptor-mediated regulation of rat islet adenylate cyclase, J. Biol. Chem. 256: 8310 (1981).

    CAS  PubMed  Google Scholar 

  41. H. Kurose, T. Katada, T. Amano, and M. Ui, Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via a-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells, J. Biol. Chem. 258: 4870 (1983).

    CAS  PubMed  Google Scholar 

  42. T. Katada and M. Ui, ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity, J. Biol. Chem. 257: 7210 (1982).

    CAS  PubMed  Google Scholar 

  43. G.M. Bokoch, T. Katada, J.K. Northup, E.L. Hewlett, and A.G. Gilman, Identification of the predominant substrate for ADPribosylation by islet activating protein, J. Biol. Chem 258: 2072 (1983).

    CAS  PubMed  Google Scholar 

  44. K. Aktories, G. Schultz, and K.H. Jakobs, Islet-activating protein impairs 0.2-adrenoceptor-mediated inhibitory regulation of human platelet adenylate cyclase, Naunyn-Schmiedeberg’s Arch. Pharmacol. in press.

    Google Scholar 

  45. K. Aktories, G. Schultz, and K.H. Jakobs, Islet-activating protein prevents nicotinic acid-induced GTPase stimulation and GTP but not GTPyS-induced adenylate cyclase inhibition in rat adipocytes, FEBS Lett. 156: 88 (1983).

    Article  CAS  Google Scholar 

  46. D.L. Burns, E.L. Hewlett, J. Moss, and M. Vaughan, Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108–15 cells, J. Biol. Chem. 258: 1435 (1983).

    CAS  PubMed  Google Scholar 

  47. K. Aktories, G. Schultz, and K.H. Jakobs, Adenylate cyclase inhibition and GTPase stimulation by somatostatin in S49 lymphoma cyc-variants are prevented by islet-activating protein, FEBS Lett. in press.

    Google Scholar 

  48. J.D. Hildebrandt, R.D. Sekura, J. Codina, R. Iyengar, C.R. Manclark, and L. Birnbaumer, Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins, Nature 302: 706 (1983).

    Article  ADS  CAS  Google Scholar 

  49. K.H. Jakobs, K. Aktories, and G. Schultz, Mechanism of pertussis toxin action on the adenylate cyclase: Inhibition of the turn-on reaction of the inhibitory regulatory site, submitted for publication.

    Google Scholar 

  50. E.M. Ross, T. Asano, D.R. Brandt, and S.E. Pedersen, Interaction of ß-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase in reconstituted vesicles, 15th FEBS Meeting, Brussels, Abstr. vol. p. 47 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Aktories, K., Schultz, G., Jakobs, K.H. (1984). Role of Hormone-Sensitive GTPases in Adenylate Cylase Regulation. In: Kito, S., Segawa, T., Kuriyama, K., Yamamura, H.I., Olsen, R.W. (eds) Neurotransmitter Receptors. Advances in Experimental Medicine and Biology, vol 175. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-4805-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4805-4_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-4807-8

  • Online ISBN: 978-1-4684-4805-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics