Role of Hormone-Sensitive GTPases in Adenylate Cylase Regulation

  • Klaus Aktories
  • Günter Schultz
  • Karl H. Jakobs
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)

Abstract

A large variety of hormones and neurotransmitters transmit their regulatory signals into target cells via stimulation or inhibition of adenylate cyclase and the consequent increase or decrease of intracellular cyclic AMP levels. Because of the importance of adenylate cyclase as a signal transduction system, interest in adenylate cyclase has centered on the mechanisms and components involved in its hormonal control. The complete transduction system is composed of at least the specific stimulatory and inhibitory hormone receptors, the adenylate cyclase itself and two guanine nucleotide-binding, regulatory components, Ns and Ni, which act as coupler between stimulatory and inhibitory hormone receptors, respectively, and adenylate cyclase (1,2). Both types of hormones, adenylate cyclase stimulatory and inhibitory, have been shown to stimulate GTPase(s) in membrane preparations. In this review, the role of this hormone-stimulated GTP hydrolysis in the bidirectional regulation of adenylate cyclase will be considered.

Keywords

Hydrolysis Prostaglandin Epinephrine Glucagon Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Ross and A.G Gilman, Biochemical properties of hormone-sensitive adenylate cyclase, Ann. Rev. Biochem. 49: 533 (1980).CrossRefGoogle Scholar
  2. 2.
    K.H. Jakobs, K. Aktories, and G. Schultz, Mechanisms and components involved in adenylate cyclase inhibition by hormones, Adv. Cycl. Nucl. Res. in press.Google Scholar
  3. 3.
    D. Cassel and Z. Selinger, Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes, Biochim. Biophys. Acta 452: 538 (1976).CrossRefGoogle Scholar
  4. 4.
    L.J. Pike and R.J. Lefkowitz, Activation and desensitization of ß-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes, J. Biol. Chem. 255: 6860 (1980).Google Scholar
  5. 5.
    M. Lambert, M. Svoboda, and J. Christophe, Hormone-stimulated GTPase activity in rat pancreatic plasma membranes, FEBS Lett. 99: 303 (1979).CrossRefGoogle Scholar
  6. 6.
    N. Kimura and N. Shimada, Glucagon-stimulated GTP hydrolysis in rat liver plasma membranes, FEBS Lett. 117: 172 (1980).CrossRefGoogle Scholar
  7. 7.
    H.A. Lester, M.L. Steer, and A. Levitzki, Prostaglandin-stimulated GTP hydrolysis associated with activation of adenylate cyclase in human platelet membranes, Proc. Natl. Acad. Sci. USA 79: 719 (1982).CrossRefGoogle Scholar
  8. 8.
    D. Cassel, H. Levkovitz, and Z. Selinger, The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase, J. Cycl. Nucl. Res. 3: 393 (1977).Google Scholar
  9. 9.
    D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation through the ß-adrenergic receptor: Catecholamine-induced displacement of bound GDP by GTP, Proc. Natl. Acad. Sci. USA 75: 4155 (1978).CrossRefGoogle Scholar
  10. 10.
    D. Cassel and Z. Selinger, Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5’-(y-thio)triphosphate, Biochem. Biophys. Res. Commun. 77: 868 (1977).CrossRefGoogle Scholar
  11. 11.
    D. Cassel and Z. Selinger, Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site, Proc. Natl. Acad. Sci. USA 74: 3307 (1977).CrossRefGoogle Scholar
  12. 12.
    M. Svoboda, M. Lambert, and J. Schristophe, Distinct effects of the C-terminal octapeptide of cholecystokinin and of a cholera toxin pretreatment on the kinetics of rat pancreatic adenylate cyclase activity, Biochim. Biophys. Acta 675: 46 (1981).CrossRefGoogle Scholar
  13. 13.
    K. Aktories, G. Schultz, and K.H. Jakobs, Cholera toxin inhibits prostaglandin E1 but not adrenaline-induced stimulation of GTP hydrolysis in human platelet membranes, FEBS Lett. 146: 65 (1982).CrossRefGoogle Scholar
  14. 14.
    D. Cassel and T. Pfeuffer, Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. USA 75: 2669 (1978).CrossRefGoogle Scholar
  15. 15.
    T. Pfeuffer, Guanine nucleotide-controlled interactions between components of adenylate cyclase, FEBS Lett. 101: 85 (1979).CrossRefGoogle Scholar
  16. 16.
    K. Aktories, G. Schultz, and K.H. Jakobs, Stimulation of a low Km GTPase by inhibitors of adipocyte adenylate cyclase, Mol. Pharmacol. 21: 336 (1982).Google Scholar
  17. 17.
    G. Koski and W.A. Klee, Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis, Proc. Natl. Acad. Sci. USA 78: 4185 (1981).CrossRefGoogle Scholar
  18. 18.
    G. Koski, R.A. Streaty, and W.A. Klee, Modulation of sodium-sensitive GTPase by partial opiate agonists, J. Biol. Chem. 257: 14035 (1982).Google Scholar
  19. 19.
    K. Aktories and K.H. Jakobs, Epinephrine inhibits adenylate cyclase and stimulates a GTPase in human platelet membranes via a-adrenoceptors, FEBS Lett. 130: 235 (1981).CrossRefGoogle Scholar
  20. 20.
    K. Aktories, G. Schultz, and K.H. Jakobs, Somatostatin-induced stimulation of a high affinity GTPase in membranes of S49 lymphoma cyc-and H21a variants, Mol. Pharmacol. in press.Google Scholar
  21. 21.
    P. Lasch and K.H. Jakobs, Agonistic and antagonistic properties of various a-adrenergic agonists in human platelets, NaunynSchmiedeberg’s Arch. Pharmacol. 306: 119 (1979).Google Scholar
  22. 22.
    R. Grandt, K. Aktories, and K.H. Jakobs, Guanine nucleotides and monovalent cations increase agonist affinity of prostaglandin E2 receptors in hamster adipocytes, Mol. Pharmacol. 22: 320 (1982).Google Scholar
  23. 23.
    K. Aktories, G. Schultz, and K.H. Jakobs, Adenosine receptor-mediated stimulation of GTP hydrolysis in adipocyte membranes, Life Sci. 30: 269 (1982).CrossRefGoogle Scholar
  24. 24.
    K. Aktories, G. Schultz, and K.H. Jakobs, Inhibition of hamster fat cell adenylate cyclase by prostaglandin E1 and epinephrine: Requirement for GTP and sodium ions, FEBS Lett. 107: 100 (1979).CrossRefGoogle Scholar
  25. 25.
    A.J. Blume, D. Lichtshtein, and G. Boone, Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP, Proc. Natl. Acad. Sci. USA 76: 5626 (1979).CrossRefGoogle Scholar
  26. 26.
    K.H. Jakobs and G. Schultz, Different inhibitory effect of adrenaline on platelet adenylate cyclase in the presence of GTP plus cholera toxin and of stable GTP analogues, NaunynSchmiedeberg’s Arch. Pharmacol. 310: 121 (1979).Google Scholar
  27. 27.
    F. Probst and B. Hamprecht, Opioids, noradrenaline and GTP analogs inhibit cholera toxin-activated adenylate cyclase in neuroblastoma x glioma hybrid cells, J. Neurochem. 36: 580 (1981).CrossRefGoogle Scholar
  28. 28.
    T.E. Cote, C.W. Grewe, J.C. Tsuruta, R.L. Eskay, and J.W. Kebabian, D-2 dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires guanosine 5’-triphosphate, Endocrinology 110: 812 (1982).CrossRefGoogle Scholar
  29. 29.
    K. Aktories, G. Schultz, and K.H. Jakobs, Cholera toxin does not impair hormonal inhibition of adenylate cyclase and concomitant stimulation of a GTPase in adipocyte membranes, Biochim. Biophys. Acta 719: 58 (1982).CrossRefGoogle Scholar
  30. 30.
    K.H. Jakobs, Determination of the turn-off reaction for the epinephrine-inhibited human platelet adenylate cyclase, Eur. J. Biochem. 132: 125 (1983).CrossRefGoogle Scholar
  31. 31.
    G.L. Stiles and R.J. Lefkowitz, Hormone-sensitive adenylate cyclase: Delineation of a trypsin-sensitive site in the pathway of receptor-mediated inhibition, J. Biol. Chem. 257: 6287 (1982).Google Scholar
  32. 32.
    K.H. Jakobs, R.A. Johnson, and G. Schultz, Activation of human platelet adenylate cyclase by a bovine sperm component, Biochim. Biophys. Acta 756: 369 (1983).CrossRefGoogle Scholar
  33. 33.
    K.H. Jakobs, P. Lasch, M. Minuth, K. Aktories, and G. Schultz, Uncoupling of a-adrenoceptor-mediated inhibition of human platelet adenylate cyclase by N-ethylmaleimide, J. Biol. Chem. 257: 2829 (1982).Google Scholar
  34. 34.
    K. Aktories, G. Schultz, and K.H. Jakobs, Inactivation of the guanine nucleotide regulatory site mediating inhibition of the adenylate cyclase in hamster adipocytes, Naunyn-Schmiedeberg’s Arch. Pharmacol. 321: 247 (1982).Google Scholar
  35. 35.
    G.L. Johnson, H.R. Kaslow, Z. Farfel, and H.R. Bourne, Genetic analysis of hormone-sensitive adenylate cyclase, Adv. Cycl. Nucl. Res. 13: 1 (1980).Google Scholar
  36. 36.
    J.D. Hildebrandt, J. Hanoune, and L. Birnbaumer, Guanine nucleotide inhibition of cyc S49 mouse lymphoma cell membrane adenylyl cyclase, J. Biol. Chem. 257: 14723 (1982).Google Scholar
  37. 37.
    K.H. Jakobs, U. Gehring, B. Gaugler, T. Pfeuffer, and G. Schultz, Occurrence of an inhibitory guanine nucleotide-binding regulatory component of the adenylate cyclase system in cyc-variants of S49 lymphoma cells, Eur. J. Biochem. 130: 605 (1983).CrossRefGoogle Scholar
  38. 38.
    K.H. Jakobs and G. Schultz, Occurrence of a hormone-sensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc-variants, Proc. Natl. Acad. Sci. USA 80: 3899 (1983).CrossRefGoogle Scholar
  39. 39.
    K.H. Jakobs and K. Aktories, Synergistic inhibition of human platelet adenylate cyclase by stable GTP analogs and epinephrine, Biochim. Biophys. Acta in press.Google Scholar
  40. 40.
    T. Katada and M. Ui, Islet-activating protein: A modifier of receptor-mediated regulation of rat islet adenylate cyclase, J. Biol. Chem. 256: 8310 (1981).Google Scholar
  41. 41.
    H. Kurose, T. Katada, T. Amano, and M. Ui, Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via a-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells, J. Biol. Chem. 258: 4870 (1983).Google Scholar
  42. 42.
    T. Katada and M. Ui, ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity, J. Biol. Chem. 257: 7210 (1982).Google Scholar
  43. 43.
    G.M. Bokoch, T. Katada, J.K. Northup, E.L. Hewlett, and A.G. Gilman, Identification of the predominant substrate for ADPribosylation by islet activating protein, J. Biol. Chem 258: 2072 (1983).Google Scholar
  44. 44.
    K. Aktories, G. Schultz, and K.H. Jakobs, Islet-activating protein impairs 0.2-adrenoceptor-mediated inhibitory regulation of human platelet adenylate cyclase, Naunyn-Schmiedeberg’s Arch. Pharmacol. in press.Google Scholar
  45. 45.
    K. Aktories, G. Schultz, and K.H. Jakobs, Islet-activating protein prevents nicotinic acid-induced GTPase stimulation and GTP but not GTPyS-induced adenylate cyclase inhibition in rat adipocytes, FEBS Lett. 156: 88 (1983).CrossRefGoogle Scholar
  46. 46.
    D.L. Burns, E.L. Hewlett, J. Moss, and M. Vaughan, Pertussis toxin inhibits enkephalin stimulation of GTPase of NG108–15 cells, J. Biol. Chem. 258: 1435 (1983).Google Scholar
  47. 47.
    K. Aktories, G. Schultz, and K.H. Jakobs, Adenylate cyclase inhibition and GTPase stimulation by somatostatin in S49 lymphoma cyc-variants are prevented by islet-activating protein, FEBS Lett. in press.Google Scholar
  48. 48.
    J.D. Hildebrandt, R.D. Sekura, J. Codina, R. Iyengar, C.R. Manclark, and L. Birnbaumer, Stimulation and inhibition of adenylyl cyclases mediated by distinct regulatory proteins, Nature 302: 706 (1983).CrossRefGoogle Scholar
  49. 49.
    K.H. Jakobs, K. Aktories, and G. Schultz, Mechanism of pertussis toxin action on the adenylate cyclase: Inhibition of the turn-on reaction of the inhibitory regulatory site, submitted for publication.Google Scholar
  50. 50.
    E.M. Ross, T. Asano, D.R. Brandt, and S.E. Pedersen, Interaction of ß-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase in reconstituted vesicles, 15th FEBS Meeting, Brussels, Abstr. vol. p. 47 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Klaus Aktories
    • 1
  • Günter Schultz
    • 1
  • Karl H. Jakobs
    • 1
  1. 1.Pharmakologisches Institut der Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations