Use of Autoradiographic Techniques for the Localization of Neurotransmitter Receptors in Brain and Periphery: Recent Applications

  • D. R. Gehlert
  • H. I. Yamamura
  • J. K. Wamsley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)


The role of the receptor in mediating drug and neurotransmitter action has become increasingly more well-defined. Studies of a compound’s interaction with its receptor has led to the concept of rational drug design and subsequent in vitro testing procedures. Anatomical localization of these drug and neurotransmitter receptors can lead to an increased understanding of their potential role in physiological and behavioral responses, as well as helping to define mechanisms of drug action.


Amyotrophic Lateral Sclerosis Muscarinic Receptor Axonal Transport Neurotransmitter Receptor Muscarinic Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.H. Snyder, Overview of neurotransmitter binding, in: “Neurotransmitter Receptor Binding,” S.J. Enna and M.J. Kuhar, eds., Raven Press, New York, p. 1 (1978).Google Scholar
  2. 2.
    W.S. Young and M.d. Kuhar, A new method for receptor autoradiography: H-opioid receptor labeling in mounted tissue sections, Brain Res. 179: 255 (1979).CrossRefGoogle Scholar
  3. 3.
    J.M. Palacios, D.L. Niehoff and M.J. Kuhar, Receptor autoradiography with tritium sensitive film: potential for computerized densitometry, Neurosci. Lett. 25: 101 (1981).CrossRefGoogle Scholar
  4. 4.
    J.K. Wamsley and J.M. Palacios, Receptor mapping by histochemistry, in: “Handbook of Neurochemistry,” Vol. 2, A. Lajtha, ed., Plenum Press, New York, p. 27 (1982).Google Scholar
  5. 5.
    J.P. Bennett, Jr., Methods in binding studies, in: “Neurotransmitter Receptor Binding,” H.I. Yamamura, S.J. Enna and M.J. Kuhar, eds., Raven Press, New York, p. 57 (1978).Google Scholar
  6. 6.
    J.K. Wamsley and J.M. Palacios, Apposition techniques of autoradiography for microscopic receptor localization, in: “Current Methods in Cellular Neurobiology,” J. Barker and J. McKelvy, eds., John Wiley and Sons, New York, p. 241 (1983).Google Scholar
  7. 7.
    J.R. Unnerstall, D.L. Niehoff, M.J. Kuhar and3J.M. Palacios, Quantitative receptor autoradiography using [H] ultrofilm: Application to multiple benzodiazepine receptors, J. Neurosci. Methods 6: 59 (1982).CrossRefGoogle Scholar
  8. 8.
    D.R. Gehlert, H.I. Yamamura and J.K Wamsley, Autoradiographic localization of peripheral benzodiazepine blinding sites in the rat brain and kidney using [H1–R05–4864, Eur. J. Pharmacol., in press.Google Scholar
  9. 9.
    J.K. Wamsley, M.A. Zarbin, N.J.M. Birdsall and M.J. Kuhar, Muscarinic cholinergic receptors: Autoradiographic localization of high and low affinity agonist binding sites, Brain Res. 200: 1 (1980).CrossRefGoogle Scholar
  10. 10.
    M.A. Zarbin, J.K. Wamsley and M.J. Kuhar, Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: High and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity, J. Neurosci. 2: 934 (1982).Google Scholar
  11. 11.
    E. Burgisser, A. DeLeon and R.J. Lefkowitz, Reciprocal modulation of agonist and antagonist binding to muscarinic cholinergic receptor by guanine nucleotide, Proc. Natl. Acad. Sci. 79: 1732 (1982).CrossRefGoogle Scholar
  12. 12.
    F.J. Ehlert, W.R. Roeske and H.I. Yamamura, Muscarinic receptor: Regulation by guanine nucleotides, ions and N-ethylmaleimide, Fed. Proc. 40: 153 (1981).Google Scholar
  13. 13.
    N.J.M. Birdsall, A.S.V. Burgen and E.C. Hulme, Correlation between the binding properties and pharmacological responses of muscarinic receptors, in: “Cholinergic Mechanisms and Psychopharmacology,” D.J. Jenden, ed., New York, Plenum Press, p. 25 (1977).Google Scholar
  14. 14.
    N.J.M. Birdsall and E.C. Hulme, Biochemical studies on muscarinic acetylcholine receptors, J. Neurochem. 27: 7 (1976).CrossRefGoogle Scholar
  15. 15.
    P.G. Strange, N.J.M. Birdsall and A.S.V. Burgen, Occupancy of muscarinic acetylcholine receptors stimulates a guanylate cyclase in neuroblastoma cells, Biochem. Soc. Trans. 5: 189 (1977).Google Scholar
  16. 16.
    J.K. Wamsley, M.A. Zarbin and M.J. Kuhar, Muscarinic cholinergic receptors flow in the sciatic nerve, Brain Res. 217: 155 (1981).CrossRefGoogle Scholar
  17. 17.
    R. Hammer, C.P. Berrie, N.J.M. Birdsall, A.S.V. Burgen and E.C. Hulme, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283: 90 (1980).CrossRefGoogle Scholar
  18. 18.
    N.J.M. Birdsall, A.S.V. Burgen, R. Hammer, E.C. Hulme and J. Stockton, Pirenzepine - a ligand with original binding properties to muscarinic receptors, Scand. J. Gastroenterol. 15, Suppl. 66: 1 (1980).Google Scholar
  19. 19.
    M. Watson, W.R. Roeske and H.I. Yamamura, [3H]-Pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex, Life Sci. 31: 2019 (1982).Google Scholar
  20. 20.
    M. Watson, H.I. Yamamura and W.R. Roeske, A unique re3gulatory profile and regional distribution of [H]-pirenzepine in the rat provide evidence for distinct M1 and M2 muscarinic receptor subtypes, Life Sci. 32: 3001 (1983).CrossRefGoogle Scholar
  21. 21.
    J.K. Wamsley, M. Lewis, W.S. Young, III and M.J. Kuhar, Autoradiographic localization of muscarinic cholinergic receptors in the rat brainstem, J. Neurosci. 1: 176 (1981).Google Scholar
  22. 22.
    H.I. Yamamura, J.K. Wamsley, P. Deshmukh and W.R. Roeske, Differential light microscopic autoradiographic localization of muscarinic cholinergic rece.gtors in the brainstem and spinal cord of the rat using [H]-pirenzepine, Eur. J. Pharmacol. 91: 147 (1983).CrossRefGoogle Scholar
  23. 23.
    J.K. Wamsley, D.R. Gehlert, W.R. Roeske and H.I. Yamamura, Muscarinic antagonist binding site heterogeneity as e3idenced by atoradiography after direct labeling with [H]-QNB and [H]-pirenzepine, Life Sci., in press.Google Scholar
  24. 24.
    E. Costa and A. Guidotti, Molecular mechanisms in the receptor action of benzodiazepines, Ann. Rev. Pharmacol. Toxicol. 19: 531 (1979).CrossRefGoogle Scholar
  25. 25.
    W. Haefely, P. Polc, R. Schaffner, H.H. Keller, L. Pieri and H. Móhler, Facilitation of GABA-ergic transmission of drugs, in: “GABA-Neurotransmitters,” P. Krogsgaard-Larsen, J. Scheel-Kruger and H. Kofod, eds., Munksgaard, Copenhagen, p. 357 (1979).Google Scholar
  26. 26.
    W. Haefely, L. Pieri, P. Pole and R. Schaffner, in: “Handbook of Experimental Pharmacology,” F. Hoffmeister and G. Stille, eds., Springer-Verlag, Berlin, p. 213 (1981).Google Scholar
  27. 27.
    R.W. Olsen, GABA-benzodiazepine-barbiturate receptor interactions, J. Neurochem. 37: 1 (1981).CrossRefGoogle Scholar
  28. 28.
    R.W. Olsen, Drug interactions at the GABA receptor ionophore complex, Ann. Rev. Pharmacol. Toxicol. 22: 245 (1982).CrossRefGoogle Scholar
  29. 29.
    K.W. Gee, J.K. Wamsley and H.I. Yamamura, Light microscopic autoradiographic identification of picrotoxin/barbiturate b7ipgding sites in rat brain with [S]-t-butyl-bicyclophosphorothionate, Eur. J. Pharmacol. 89: 323 (1983).CrossRefGoogle Scholar
  30. 30.
    R. Squires, J.E. Casida, M. Richardson and E. Saederup, [S]-t-butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to GABA-A and ion recognition sites, Mol. Pharmacol. 23: 326 (1983).Google Scholar
  31. 31.
    W.S. Young and M.J. Kuhar, Autoradiographie localization of benzodiazepine receptors in the brains of humans and animals, Nature 280: 393 (1979).CrossRefGoogle Scholar
  32. 32.
    W.S. Young and M.J. Kuhar, Radiohistochemical localization of benzodiazepine receptors in rat brain, J. Pharmacol. Exp. Therap. 212: 337 (1980).Google Scholar
  33. 33.
    J.K. Wamsley, K.W. Gee and H.I. Yamamura, Comparison of the distribution of convulsant/barbiturate and benzodiazepine receptors using light microscopic autoradiography, Life Sci. 33: 2321 (1983).CrossRefGoogle Scholar
  34. 34.
    R.W. Olsen and F. Leeb-Lundberg, Convulsant and anticonvulsant drug binding sites related to the GABA receptor/ionophore system, in: “Neurotransmitters, Seizures and Epilepsy,” P.O. Morselli, K.G. Lloyd, W. Lgscher, B.S. Meldrum and E.H. Reynolds, eds., Raven Press, New York, p. 151 (1981).Google Scholar
  35. 35.
    F. Leeb-Lundberg and R.W. Olsen, Heterogeneity of benzodiazepine receptor interactions with gamma-aminobutyric acid and barbiturate receptor sites, Mol. Pharmacol. 23: 315 (1983).Google Scholar
  36. 36.
    R. Hammer and F.W. Koss, The pharmacokinetic profile of pirenzepine, Scand. J. Gastroenterol. 14, Suppl. 57: 1 (1979).Google Scholar
  37. 37.
    H.I. Yamamura, K.W. Gee, R.E. Brinton, J.P. Davis, M. Hadley and J.K. Wamsley, Tight microscopic autoradiographic visualization of [H]-arginine vasopressin binding sites in the rat brain, Life Sci. 32: 1919 (1983).CrossRefGoogle Scholar
  38. 38.
    D.G. Baskin, F. Petracca and D.M. Dorsa, Autsradiogrgphic localization of specific binding sites for [H]-[Arg] vasopressin in the septum of the rat brain with tritium sensitive film, Eur. J. Pharmacol. 90: 155 (1983).CrossRefGoogle Scholar
  39. 39.
    F.W. Van Leeuwen and P. Wolters, Lyht microscopic autoradiographic localization of [H]-arginine-vasopressin binding sites in the rat brain and kidney, Neurosci. Lett. 41: 61 (1983).CrossRefGoogle Scholar
  40. 40.
    D.R. Gehlert, R.C. Speth, D.P. Healy and J.K. Wamsley, Autoradiographic localization of angiotensin II receptors in the rat brainstem, Life Sci., in press.Google Scholar
  41. 41.
    R. Quirion, C.W. Shul.ts, T.W. Moody, C.B. Pert, T. N. Chase and T.L. O’Donohue, Autoradiographic distribution of substance P receptors in rat central nervous system, Nature 203: 714 (1983).Google Scholar
  42. 42.
    C.J. Heike, J.J. Neil, V.J. Massari and A.D. Loewy, Substance P neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat, Brain Res. 243: 147 (1982).CrossRefGoogle Scholar
  43. 43.
    J.K. Wamsley, Muscarinic cholinergic receptors undergo axonal transport in the brain, Eur. J. Pharmacol. 86: 309 (1983).CrossRefGoogle Scholar
  44. 44.
    E. Snowhill and J.K. Wamsley, Serotonin type-2 receptors undergo axonal transport in the medial forebrain bundle, Eur. J. Pharmacol., in press.Google Scholar
  45. 45.
    C.U. Vorhees, D.E. Schmidt and R.J. Barrett, Effects of pyrithiamin and oxythiamin on acetylcholine levels and utilization in rat brain, Brain Res. Bull. 3: 493 (1978).CrossRefGoogle Scholar
  46. 46.
    K.V. Speeg, D. Chen, D.W. McCandless and S. Scheuker, Cerebral acetylcholine in thiamine deficiency, Proc. Soc. Exp. Biol. Med. 135: 1005 (1970).Google Scholar
  47. 47.
    G.A. Bray and D.A. York, Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis, Physiol. Rev. 59 (3): 719 (1979).Google Scholar
  48. 48.
    S.C. Woods and D. Porte, The central nervous system, pancreatic hormones, feeding and obesity, Adv. Metab. Disord. 9: 283 (1978).Google Scholar
  49. 49.
    H. Shoemaker, R.G. Boles, W.D. Horst and H31. Yamamura, Specific high affinity binding sites for [311]-R05–4864 in rat brain and kidney, J. Pharmacol. Exp. Therap. 225: 61 (1983).Google Scholar
  50. 50.
    P.J. Whitehouse, J.K. Wamsley, M.A. Zarbin, D.L. Price, W.W. Tourtellotte and M.J. Kuhar, Amyotrophic lateral sclerosis: Alteration in neurotransmitter receptors, Ann. Neurol. 14: 8 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. R. Gehlert
    • 1
    • 2
  • H. I. Yamamura
    • 1
    • 2
  • J. K. Wamsley
    • 1
    • 2
  1. 1.Departments of Psychiatry, Anatomy and PharmacologyUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Departments of Pharmacology, Biochemistry, Psychiatry and the Arizona Research LaboratoriesUniversity of Arizona Health Science CenterTucsonUSA

Personalised recommendations