Purification of γ-Aminobutyric Acid (GABA) and Benzodiazepine Receptors from Rat Brain Using Benzodiazepine-Affinity Column Chromatography

  • Kinya Kuriyama
  • Jun-ichi Taguchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)


γ-Aminobutyric acid (GABA) has been established as a major inhibitory neurotransmitter in the mammalian central nervous system (1–4) as well as invertebrate nervous systems (5,6). GABA acts through a physiologically relevant receptor protein, the GABA receptor, which is labeled specifically by [3H]GABA (7) and various GABA agonists such as [3H]muscimol (8,9). On the other hand, it has been demonstrated that specific and pharmacologically relevant benzodiazepine receptors exist in the mammalian central nervous system (10,11).


Gaba Receptor Mammalian Central Nervous System Affinity Column Chromatography Sodium Thiocyanate Sodium Bicarbonate Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kuriyama, B. Haber, B. Sisken, and E. Roberts, The γ-aminobutyric acid system in rabbit cerebellum, Proc. Natl. Acad. Sci. U.S.A. 55: 846 (1966).CrossRefGoogle Scholar
  2. 2.
    L. L. Iversen and F. E. Bloom, Studies on the uptake of [3H]GABA and [3H]glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography, Brain Res. 41: 131 (1972).CrossRefGoogle Scholar
  3. 3.
    Y. Miyata and M. Otsuka, Distribution of γ-aminobutyric acid in cat spinal cord and the alteration produced by local ischemia, J. Neurochem. 19: 1833 (1972).CrossRefGoogle Scholar
  4. 4.
    Y. Yoneda and K. Kuriyama, A comparison of microdistribution of taurine and cysteine sulphinate decarboxylase activity with those of GABA and L-glutamate decarboxylase, J. Neurochem. 30: 821 (1978).CrossRefGoogle Scholar
  5. 5.
    E. A. Kravitz, P. B. Molinoff, and Z. W. Hall, A comparison of the enzymes and substrates of gamma-aminobutyric acid metabolism in lobster excitatory and inhibitory axons, Proc. Natl. Acad. Sci. U.S.A. 54: 778 (1965).CrossRefGoogle Scholar
  6. 6.
    M. Otsuka, L. L. Iversen, Z. W. Hall, and E. A. Kravitz, Release of gamma-aminobutyric acid from inhibitory nerves of lobster, Proc. Natl. Acad. Sci. U.S.A. 56: 1110 (1966).CrossRefGoogle Scholar
  7. 7.
    S. R. Zukin, A.B. Young, and S. H. Snyder, Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system, Proc. Natl. Acad. Sci. U.S.A. 71: 4802 (1974).CrossRefGoogle Scholar
  8. 8.
    K. Beaumont, W. Chilton, H. I. Yamamura, and S. J. Enna, Muscimol binding in rat striatum: association with synaptic GABA receptors, Brain Res. 148: 153 (1978).CrossRefGoogle Scholar
  9. 9.
    S. R. Snodgrass, Use of [3H] muscímol for GABA receptor studies, Nature (Lond.) 273: 392 (1978).CrossRefGoogle Scholar
  10. 10.
    H. Mohler and T. Okada, Benzodiazepine receptors: Demonstration in the central nervous system, Science 198: 849 (1977).CrossRefGoogle Scholar
  11. 11.
    C. Braestrup and R. F. Squires, Specific benzodiazepine receptors in rat brain characterized by high affinity [3H]diazepam binding, Proc. Natl. Acad. Sci. U.S.A. 74: 3805 (1977).CrossRefGoogle Scholar
  12. 12.
    M. S. Briley and S. Z. Langer, Influence of GABA receptor agonists and antagonists on the binding of [3H]diazepam to the benzodiazepine receptor, Eur. J. Pharmacol. 52: 129 (1978).CrossRefGoogle Scholar
  13. 13.
    G. J. Wastek, R. C. Speth, T. D. Reisine, and H. I. Yamamura, The effect of gamma-aminobutyric acid on 3H-flunitrazepam binding in the rat brain, Eur. J. Pharmacol. 50: 445 (1978).CrossRefGoogle Scholar
  14. 14.
    J. F. Tallman, J. W. Thomas, and D. W. Gallager, GABAergic modulation of benzodiazepine binding site sensitivity, Nature (Lond.) 274: 383 (1978).CrossRefGoogle Scholar
  15. 15.
    M. Karobath and G. Sperk, Stimulation of benzodiazepine receptor binding by y-aminobutyric acid, Proc. Natl. Acad. Sci. U.S.A. 76: 1004 (1979).CrossRefGoogle Scholar
  16. 16.
    A. Guidotti, G. Toffano, and E. Costa, An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain, Nature (Lond.) 275: 553 (1978).CrossRefGoogle Scholar
  17. 17.
    Y. Ito and K. Kuriyama, Some properties of solubilized GABA receptor, Brain Res. 236: 351 (1982).CrossRefGoogle Scholar
  18. 18.
    M. Gavish, R. S. L. Chang, and S. H. Snyder, Solubilization of histamine H-1, GABA and benzodiazepine receptors, Life Sci. 25: 783 (1979).CrossRefGoogle Scholar
  19. 19.
    T. Asano and N. Ogasawara, Soluble gamma-aminobutyric acid and benzodiazepine receptors from rat cerebral cortex, Life Sci. 29: 193 (1981).CrossRefGoogle Scholar
  20. 20.
    M. Gavish and S. H. Snyder, γ-Aminobutyric acid and benzodiazepine receptors: Copurification and characterization, Proc. Natl. Acad. Sci. U.S.A. 78: 1939 (1981).CrossRefGoogle Scholar
  21. 21.
    T. Asano, Y. Yamada, and N. Ogasawara, Soluble GABA/benzodiazepine receptors from bovine cerebral cortex, in: “Problems in GABA Research,” Y. Okada and E. Roberts, eds., Excerpta Medica, Amsterdam-Oxford-Princeton (1982).Google Scholar
  22. 22.
    Y. Ito, K. Kuriyama, E. Ueno, C. Nishimura, and Y. Yoneda, Solubilization and partial purification of cerebral GABA receptors, in: “Problems in GABA Research,” Y. Okada and E. Roberts, eds., Excerpta Medica, Amsterdam-Oxford-Princeton (1982).Google Scholar
  23. 23.
    F. A. Stephenson and R. W. Olsen, Solubilization by CHAPS detergent of barbiturate-enhanced benzodiazepine-GABA receptor complex, J. Neurochem. 39: 1579 (1982).CrossRefGoogle Scholar
  24. 24.
    F. A. Stephenson, A. E. Watkins, and R. W. Olsen, Physicochemical characterization of detergent-solubilized y-aminobutyric acid and benzodiazepine receptor proteins from bovine brain, Eur. J. Biochem. 123: 291 (1982).CrossRefGoogle Scholar
  25. 25.
    T. Asano, Y. Yamada, and N. Ogasawara, Characterization of the solubilized GABA and benzodiazepine receptors from various regions of bovine brain, J. Neurochem. 40: 209 (1983).CrossRefGoogle Scholar
  26. 26.
    E. Sigel, F. A. Stephenson, C. Mamalaki, and E. A Barnard, A y-aminobutyric acid/benzodiazepine receptor complex of bovine cerebral cortex: Purification and partial characterization, J. Biol. Chem. 258: 6965 (1983).Google Scholar
  27. 27.
    P. Cuatrecasas, Protein purification by affinity chromatography: Derivations of agarose and polyacrylamide beads, J. Biol. Chem. 245: 3059 (1970).Google Scholar
  28. 28.
    U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (Lond.) 227: 680 (1970).CrossRefGoogle Scholar
  29. 29.
    H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 183: 265 (1951).Google Scholar
  30. 30.
    M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72: 248 (1976).CrossRefGoogle Scholar
  31. 31.
    W. Sieghart and M. Karobath, Molecular heterogeneity of benzodiazepine receptors, Nature (Lond.) 286: 285 (1980).CrossRefGoogle Scholar
  32. 32.
    K. Kuriyama and Y. Ito, Some characteristics of solubilized and partially purified cerebral GABA and benzodiazepine receptors, in: “CNS Receptors - From Molecular Pharmacology to Behavior,” P. Mandel and F. V. DeFeudis, eds., Raven Press, New York, p. 59 (1983).Google Scholar
  33. 33.
    C. A Klepner, A. S. Lippa, D. I. Benson, M C. Sano, and B. Beer, Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors, Pharmacol. Biochem. Behay. 11: 457 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kinya Kuriyama
    • 1
  • Jun-ichi Taguchi
    • 1
  1. 1.Department of PharmacologyKyoto Prefectural University of MedicineKamikyo-Ku Kyoto 602Japan

Personalised recommendations