Advertisement

Evidence for Alpha2 Adrenergic Receptors in Bovine Cerebral Arteries

  • Takashi Taniguchi
  • Motohatsu Fujiwara
  • Tetsuya Tsukahara
  • Hajime Handa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)

Abstract

Adrenergic innervation to cerebral arteries is thought to play an important role in controlling cerebral blood flow (1). Histochemical studies have revealed high concentrations of norepinephrine and rich adrenergic innervation from the superior cervical ganglion in the adventitia and outer border of the medial layer of cerebral arteries in various species (2,3). Isolated cerebral arteries are contracted by alpha adrenergic agonists in a dose dependent manner and this contraction is blocked by alpha adrenergic antagonists (4,5). Alpha adrenergic receptors have been classified into alpha and alpha2 subtypes (6,7). Sakakibara et al. (8) suggested that contraction of the isolated dog basilar artery is mediated by alpha receptors. In the present study, we attempted to characterize alph2 adrenergic receptors in bovine cerebral arteries using an alpha1 antagonist, [3H]prazosin and an alpha2 antagonist, [3H]yohimbine.

Keywords

Cerebral Artery Adrenergic Receptor Superior Cervical Ganglion Alpha Adrenergic Receptor Adrenergic Innervation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. D’Alecy and E. O. Feigel, Sympathetic control of cerebral blood flow in dogs, Circ. Res. 31: 267 (1972).CrossRefGoogle Scholar
  2. 2.
    N. Ohgushi, Adrenergic fibers to the brain and spinal cord vessels in the dog, Archiv. fur Japanishe Chirurgie 37: 294 (1968).Google Scholar
  3. 3.
    B. Hartman and S. Udenfriend, The use of dopamine-β-hydroxylase as a marker for the central noradrenergic nervous system in rat brain, Proc. Natl. Acad. Sci. USA 69: 2722 (1972).CrossRefGoogle Scholar
  4. 4.
    L. Edvinsson and C. Owman, Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro, Circ. Res. 35: 835 (1974).CrossRefGoogle Scholar
  5. 5.
    S. P. Duckles and J. A. Bevan, Pharmacological characterization of adrenergic receptor of a rabbit cerebral artery in vitro, J. Pharmacol. Exp. Ther. 197: 371 (1976).Google Scholar
  6. 6.
    S. Z. Langer, Presynaptic adrenoceptor and regulation of release, In: “The Release of Catecholamine from Adrenergic Neurons,” D. M. Panton, ed., Pergamon Press, Oxford, p. 59 (1979).Google Scholar
  7. 7.
    K. Starke and S. Z. Langer, A note on terminology for presynap- tic receptors, In: “Presynaptic Receptors,” S. Z. Langer, K. Starke and M. L. Dubocovich, ed., Pergamon Press, Oxford, p. 1 (1979).Google Scholar
  8. 8.
    Y. Sakakibara, M. Fujiwara and I. Muramatsu, Pharmacological characterization of the alpha adrenoceptors of the dog basilar artery, Naunyn-Schimiedeberg’s Arch. Pharmacol. 319: 1 (1982).Google Scholar
  9. 9.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265 (1951).Google Scholar
  10. 10.
    A. H. Friedman and J. N. Davis, Identification and characterization of adrenergic receptors and catecholamine-stimulated adenylate cyclase in hog pial membranes, Brain Res. 183: 89 (1980).CrossRefGoogle Scholar
  11. 11.
    S. I. Harik, V. K. Sharma, J. R. Wetherbee, R. H. Warren, and S. P. Banerjee, Adrenergic receptors of cerebral micro-vessels, Eur. J. Pharmacol. 61: 207 (1977).CrossRefGoogle Scholar
  12. 12.
    S. M. Bentley, G. M. Drew, and S. B. Whiting, Evidence for two distinct types of postsynaptic α-adrenoceptor, Br. J. Pharmacol. 61: 116P (1977).Google Scholar
  13. 13.
    P. B. M. W. M. Timmermans, H. Y. Kwa, and P. A. van Zwieten, Possible subdivision of postsynaptic α-adrenoceptors mediating pressor responses in the pithed rat, Naunyn-Schmiedeberg’s Arch. Pharmacol. 310: 189 (1979).CrossRefGoogle Scholar
  14. 14.
    S. Z. Langer, R. Massingham, and N. B. Shepperson, Presence of postsynaptic α2-adrenoceptors of predominantly extra-synaptic location in the vascular smooth muscle of the dog hind limb. Clin. Sci. 59: 225 (1980).Google Scholar
  15. 15.
    S. Z. Langer and N. B. Shepperson, Recent development in vascular smooth muscle pharmacology: the post-synaptic α2-adrenoceptor, Trends Pharmacol. Sci. 3: 440 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Takashi Taniguchi
    • 1
  • Motohatsu Fujiwara
    • 1
  • Tetsuya Tsukahara
    • 2
  • Hajime Handa
    • 2
  1. 1.Department of Pharmacology Faculty of MedicineKyoto UniversityKyoto 606Japan
  2. 2.Department of Neurosurgery Faculty of MedicineKyoto UniversityKyoto 606Japan

Personalised recommendations