Skip to main content

Ordered Nerve Connections: Pathways and Maps

  • Chapter
Organizing Principles of Neural Development

Part of the book series: NATO ASI Series ((NSSA,volume 78))

  • 44 Accesses

Abstract

The idea that orderly neuronal interconnections are based on chemoselective recognition between the cells and their processes was proposed by Cajal (1892) and given experimental support by the work of Langley (1895). In its present form the hypothesis of neuronal specificity, as it is now called, derives largely from the work of Sperry (1943; 1944; 1945; 1951; 1963; 1965) and it proposes that interconnecting populations of neurones each acquire positionally dependent chemoselectivity labels, or markers, early in development, and that properly ordered interconnections between the populations are based on selective affinities between the markers carried by one population and those carried by the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi, D.G. and Sperry, R.W., 1963, Preferential selection of central pathways by regenerating optic fibres, Exp. Neurol., 7:46–64.

    Article  Google Scholar 

  • Cajal, S.R., 1892, The structure of the retina. English Translation, 1972, Charles C. Thomas, Springfield.

    Google Scholar 

  • Fawcett, J.W. and Gaze, R.M., 1982, The retinotectal fiber pathways from normal and compound eyes in Xenopus, J. Embryol. exp. Morph., in press.

    Google Scholar 

  • Fujisawa, H., Wakanabe, K., Tani, N. and Ibata, Y., 1981a, Retino-topic analyses of fiber pathways in amphibians. I. The adult newt, Cynops pyrrhogaster. Brain Res., 206:9–20.

    Article  Google Scholar 

  • Fujisawa, H., Wakanabe, K., Tani, N. and Ibata, Y., 1981b, Retino-topic analyses of fiber pathways in amphibians. II. The frog Rana nigromaculata. Brain Res., 206:21–26.

    Article  Google Scholar 

  • Gaze, R.M., Chung, S.-H. and Keating, M.J., 1972, Development of the retinotectal projection in Xenopus, Nature, 236:133–135.

    Article  Google Scholar 

  • Gaze, R.M. and Grant, P., 1978, The diencephalic course of regenerating retinotectal fibres in Xenopus tadpoles, J. Embryol. exp. Morph., 44:201–216.

    Google Scholar 

  • Gaze, R.M. and Hope, R.A., 1976, The formation of continuously ordered mappings, Prog. Brain Res., 45:327–355.

    Article  Google Scholar 

  • Gaze, R.M. and Hope, R.A., 1982, The visuotectal projection following translocation of grafts within an optic tectum in the goldfish, J. Physiol. Lond., in press.

    Google Scholar 

  • Gaze, R.M., Jacobson, M. and Szekely, G., 1963, The retinotectal projection in Xenopus with compound eyes, J. Physiol. Lond., 165:484–499.

    Google Scholar 

  • Gaze, R.M., Keating, M.J. and Chung, S.-H., 1974, The evolution of the retinotectal map during developing in Xenopus, Proc. Roy. Soc. Lond. B 185:301–330.

    Article  Google Scholar 

  • Gaze, R.M., Keating, M.J., Ostberg, A., and Chung, S.-H., 1979, The relationship between retinal and tectal growth in larval Xenopus: implications for the development of the retinotectal projection , J. Embryol. exp. Morph., 53:103–143.

    Google Scholar 

  • Gaze, R.M. and Sharma, S.C., 1970, Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibres, Exp. Brain Res., 10:171–181.

    Article  Google Scholar 

  • Gaze, R.M. and Straznicky, C., 1980, Regeneration of optic nerve fibres from a compound eye to both tecta in Xenopus: evidence relating to the state of specification of the eye and the tectum, J. Embryol. exp. Morph., 60:125–140.

    Google Scholar 

  • Giorgi, P.P. and Van der Loos, H., 1978, Axons from eyes grafted in Xenopus can grow into the spinal cord and reach the optic tectum, Nature, 275:746–748.

    Article  Google Scholar 

  • Glastonbury, J. and Straznicky, K., 1978, Aberrant ipsilateral retinotectal projection following optic nerve section in Xenopus, Neuroscience Letts., 7:67–72.

    Article  Google Scholar 

  • Hope, R.A., Hammond, B.J. and Gaze, R.M., 1976, The arrow model: retinotectal specificity and map formation in the goldfish visual system, Proc. Roy. Soc. Lond. B 194:447–466.

    Article  Google Scholar 

  • Horder, T.J., 1971, Retention by fish optic nerve fibres regenerating to new terminal sites in the tectum of “chemospecific” affinity for their original sites, J. Physiol. Lond., 216:53–55P.

    Google Scholar 

  • Jacobson, M. and Levine, R.L., 1975, Stability of implanted duplicated tectal positional markers serving as targets for optic axons in adult frogs, Brain Res., 92:468–471.

    Article  Google Scholar 

  • Langley, J.N., 1895, A note on the regeneration of preganglion fibres in the cat sympathetic system, J. Physiol. Lond., 18:280–284.

    Google Scholar 

  • Nieuwkoop, P.D. and Faber, J., 1956, Normal Table of Xenopus laevis, (Daudin), Amsterdam: North Holland.

    Google Scholar 

  • Schmidt, J.T., 1978, Retinal fibers alter tectal positional markers during the expansion of the half retinal projection in goldfish, J. comp. Neurol., 177:279–300.

    Article  Google Scholar 

  • Sperry, R.W., 1943, Visuomotor coordination in the newt (Tritinus viridescens) after regeneration of the optic nerve, J. comp. Neurol., 79:33–55.

    Article  Google Scholar 

  • Sperry, R.W., 1944, Optic nerve regeneration with return of vision in aurans, J. Neurophysiol., 7:57–70.

    Google Scholar 

  • Sperry, R.W., 1945, Restoration of vision after crossing of optic nerves and after contralateral transplantation of eye, J. Neurophysiol., 8:15–18.

    Google Scholar 

  • Sperry, R.W., 1951, Mechanisms of neural maturation, In: Handbook of Experimental Psychology, S.S. Stevens (Ed.), Wiley, New York, pp. 236–280.

    Google Scholar 

  • Sperry, R.W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Nat. Acad. Sc. (U.S.A), 50:703–710.

    Article  Google Scholar 

  • Sperry, R.W., 1965, Embryogenesis of behavioural nerve ends (?) in Organogenesis, R.L. DeHann and Unspring, H. (Eds.), Holt, Rienehand and Winston, New York, pp. 161–186.

    Google Scholar 

  • Steedman, J.G., 1981, Pattern formation in the visual pathways of Xenopus laevis., Ph.D. Thesis, London.

    Google Scholar 

  • Straznicky, K. and Gaze, R.M., 1971, The growth of the retina in Xenopus laevis: an autoradiographic study, J. Embryol. exp. Morph., 26:67–79.

    Google Scholar 

  • Straznicky, K. and Gaze, R.M., 1972, The development of the tectum in Xenopus laevis: an autoradiographic study, J. Embryol. exp. Morph., 28:87–115.

    Google Scholar 

  • Straznicky, C., Gaze, R.M. and Horder, T.J., 1979, Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiograph study in Xenopus, J. Embryol. exp. Morph., 50:253–267.

    Google Scholar 

  • Straznicky, K., Gaze, R.M. and Keating, M.J., 1974, The retinotectal projection from a double-ventral compound eye in Xenopus laevis, J. Embryol. exp. Morph., 31:123–137.

    Google Scholar 

  • Straznicky, C., Gaze, R.M. and Keating, M.J., 1981, The development of the retinotectal projections from compound eyes in Xenopus, J. Embryol. exp. Morph., 62:13–35.

    Google Scholar 

  • Yoon, M.G., 1972, Transposition of the visual projection from the nasal hemiretina onto the foreign rostral zone of the optic tectum in goldfish, Exp. Neurol., 37:451–462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Gaze, R.M. (1984). Ordered Nerve Connections: Pathways and Maps. In: Sharma, S.C. (eds) Organizing Principles of Neural Development. NATO ASI Series, vol 78. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4802-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4802-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4804-7

  • Online ISBN: 978-1-4684-4802-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics