Interactions of Axons with their Environment: The Chick Retino-Tectal System as a Model

  • Uli Schwarz
  • Willi Halfter
Part of the NATO ASI Series book series (NSSA, volume 78)


In complex organisms, the different regions of the body and the various parts of the nervous system are interconnected via axons. These axons grow out from neural cell bodies in a timed and topolog-ically defined manner resulting in the establishment of specific connectivity patterns during embryogenesis (for review see Cowan, 1978). Perhaps the best studied example of such a pattern is the projection of the retina onto the optic tectum.


Growth Cone Optic Tectum Tectal Membrane Chick Retina Retinal Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bispink, G., and Neuhoff, V., 1976, Isoelektrische Fokussierung in Mikrogelen zur Fraktionierung komplexer Proteingemische in Nanogrammbereich, Hoppe-Seylers, Z. Physiol. Chem., 35 7:991–997.CrossRefGoogle Scholar
  2. Bonhoeffer, F., and Huf, J., 1982, In vitro experiments on axon guidance demonstrating an anterior-posterior gradient on the tectum, EMBO Journal, 1:427–431.Google Scholar
  3. Claviez, M., 1981, Kultur embryonaler Hühnchen-Retina: Eigenschaften auswachsender Neuriten und ihre Wechselwirkung mit der Umgebung, Thesis, Universitat Tubingen.Google Scholar
  4. Cowan, W.M., 1978, Aspects of neural development, Int. Rev. Physiol. Neurophysiol., 17:149–191.Google Scholar
  5. Cowan, W.M., Martin, A.H., and Wenger, E., 1968, Mitotic patterns in the optic tectum of the chick during normal development and after early removal of the optic vesicle, J. Exp. Zool., 169:71–92.CrossRefGoogle Scholar
  6. Crossland, W.J., Cowan, W.M., and Rogers, L.A., 1975, Studies on the development of the chick optic tectum. IV. An autoradiographic study of the development of retino-tectal connections, Brain Res., 91:1–23.CrossRefGoogle Scholar
  7. Dubray, G., and Bezard, G., 1982, A highly sensitive periodic acid-silver stain for 1, 2-diol groups of glycoproteins and polysaccharides in Polyacrylamide gels, Analyt. Biochem., 119:325–329.CrossRefGoogle Scholar
  8. Fraser, S.E., 1980, A differential adhesion approach to the patterning of nerve connections, Dev. Biol., 79:453–464.CrossRefGoogle Scholar
  9. Gierer, A., 1982, Model for the retino-tectal projection, Proc. Roy. Soc. B., in press.Google Scholar
  10. Goldberg, S., 1974, Studies on the mechanics of development of the visual pathways in the chick embryo, Dev. Biol., 36:24–43.CrossRefGoogle Scholar
  11. Goldberg, S., 1977, Undirectional, bidirectional, and random growth of embryonic optic axons, Exp. Eye Res., 25:399–404.CrossRefGoogle Scholar
  12. Goldberg, S., and Coulombre, A.J., 1972, Topographical development of the nerve fiber layer in the chick retina. A whole mount study, J. Comp. Neurol., 146:507–517.CrossRefGoogle Scholar
  13. Gottlieb, D.J., and Glaser, L., 1975, A novel assay of neuronal cell adhesion, Biochem. Biophys. Res. Comm., 63:815–821.CrossRefGoogle Scholar
  14. Gottlieb, D.J., Rock, K., and Glaser, L., 1976, A gradient of adhesive specificity in developing avian retina, Proc. Nat. Acad. Sci. USA, 73:410–414.CrossRefGoogle Scholar
  15. Halfter, W., Claviez, M., and Schwarz, U., 1981, Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites, Nature, 292:67–70.CrossRefGoogle Scholar
  16. Halfter, W., Newgreen, D.F., Sauter, J., and Schwarz, U., 1982, Oriented axon outgrowth from avian embryonic retinae in culture, Dev. Biol., in press.Google Scholar
  17. Henke, S., 1982, Monoklonale Antikörper gegen Oberflachenkomponenten neuronaler Zellen, Thesis, Universitat Tubingen.Google Scholar
  18. Hughes, W.F., and McLoon, S.C., 1979, Ganglion cell death during normal retinal development in the chick: Comparisons wtih cell death induced by early target field destructions, Exp. Neurol., 66:507–601.CrossRefGoogle Scholar
  19. Kahn, A.J., 1973, Ganglion cell formation in the chick neural retina, Brain Res., 63:285–290.CrossRefGoogle Scholar
  20. Kahn, A.J., 1974, An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina, Dev. Biol., 38:30–40.CrossRefGoogle Scholar
  21. Krayanek, S., and Goldberg, S., 1981, Oriented extracellular channels and axonal guidance in the embryonic chick retina, Dev. Biol., 84:41–50.CrossRefGoogle Scholar
  22. LaVail, J.H., and Cowan, W.M., 1971, The development of the chick optic tectum. II. Autoradiographic studies, Brain Res., 28:421–441.CrossRefGoogle Scholar
  23. Neuhoff, V. (ed.), 1973, in: Micromethods in Molecular Biology, Springer-Verlag, Heidelberg.Google Scholar
  24. Neukirchen, R.O., 1980, Gel-Elektrophorese im Mikromasstab. Entwicklung und praktische Anwendung von ein- und zweidimensionaler Polyacrylamid-Gelelektrophorese zur Trennung von Proteinen im Nanogrammbereich, Thesis, Universität Tübingen.Google Scholar
  25. Neukirchen, R.P., Schlosshauer, B., Baars, S., Jackie, H., and Schwarz, U., 1982, Two-dimensional protein analysis of high resolution on a microscale, J. Biol. Chem., in press.Google Scholar
  26. O’Farrell, P.H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 250:4007–4021.Google Scholar
  27. O’Farrell, P.Z., Goodman, H.M., and O’Farrell, P.H., 1977, High resolution two-dimensional electrophoresis of basic as well as acidic proteins, Cell, 12:1133–1142.CrossRefGoogle Scholar
  28. Rager, G., and von Oeynhausen, B., 1979, Ingrowth and ramification of retinal fibers in the developing optic tectum of the chick embryo, Exp. Brain Res., 35:213–227.CrossRefGoogle Scholar
  29. Silver, H., and Sidman, R.L., 1980, A mechanism for the guidance and topographic patterning of retinal ganglion cell axons, J. Comp. Neurol., 189:101–111.CrossRefGoogle Scholar
  30. Sperry, R.W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Nat. Acad. Sci. USA., 50:703–710.CrossRefGoogle Scholar
  31. Tris1er, G.D., Schneider, M.D., and Nirenberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position, Proc. Nat. Acad. Sci. USA., 78:2145–2149.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Uli Schwarz
    • 1
  • Willi Halfter
    • 1
  1. 1.Biochemistry DepartmentMax-Planck-Institut für VirusforschungTübingenFederal Republic of Germany

Personalised recommendations