Mutation-Induced Disorders of Mammalian Forebrain Development

  • Verne S. CavinessJr.
  • Alan L. Pearlman
Part of the NATO ASI Series book series (NSSA, volume 78)


Mutations at more than one hundred single gene loci modify unfavorably the development of the mammalian central nervous system (Sidman, Green and Appel, 1965; Caviness and Rakic, 1978). A few of these appear to involve a relatively small number of cellular events of development. The effect of the mutation may appear to be restricted to a given region or even to a given neural system in some instances. The present review is concerned with three groups of mutations which have particular significance in this way for the development of the forebrain:
  1. 1.

    The reeler mutation, which causes a systematic disorder of neuron position in cortical structures.

  2. 2.

    The tottering mutation, which is associated with an augmentation in cortical innervation derived from the locus ceruleus.

  3. 3.

    A variety of mutations that modify the trajectories of axon fascicles.



Pyramidal Cell Normal Animal Cortical Plate Locus Ceruleus Retinal Projection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angevine, J., Jr., and Sidman, R.L., 1961, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature, 192:766–768.CrossRefGoogle Scholar
  2. Benzer, S., 1973, Genetic dissection of behavior, Sci. Am., 229:24–37.CrossRefGoogle Scholar
  3. Caviness, V.S., Jr., 1976a, Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse, J. Comp Neurol., 170:435–448.CrossRefGoogle Scholar
  4. Caviness, V.S., Jr., 1976b, Reeler mutant mice and laminar distribution of afferents in the neocortex, Exp. Brain Res., Suppl. 1:267–273.Google Scholar
  5. Caviness, V.S., Jr., 1977, The reeler mutant mouse: a genetic experiment in developing mammalian cortex, Soc. Neurosci. Symp., 2:27–46.Google Scholar
  6. Caviness, V.S., Jr., 1982, Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography, Dev. Brain Res., 4:293–302.CrossRefGoogle Scholar
  7. Caviness, V.S., Jr., and Frost, D.O., 1980, Tangential organization of thalamic projections to the neocortex in mouse, J. Comp. Neurol., 194:335–367.CrossRefGoogle Scholar
  8. Caviness, V.S., Jr., and Frost, D.O., 1982, Thalamocortical projections in the reeler mutant mouse, submitted for publication.Google Scholar
  9. Caviness, V.S., Jr., Frost, D.O., and Hayes, N.L., 1976, Barrels in somatosensory cortex of normal and reeler mutant mice, Neurosci. Lett., 3:7–14.CrossRefGoogle Scholar
  10. Caviness, V.S., Jr., and Korde, M.G., 1981, Monoaminergic afferents to the neocortex: a developmental histofluorescence study in normal and reeler mouse embryos, Brain Res., 209:1–9.CrossRefGoogle Scholar
  11. Caviness, V.S., Jr., Pinto-Lord, M.C., and Evrard, P., 1981, The development of laminated pattern in the mammalian neocortex. In: Morphogenesis and Pattern Formation, pp. 103–126, L.L. Brinkley, B.M. Carlson and I.G. Connolly, eds, Raven Press, New York.Google Scholar
  12. Caviness, V.S., Jr., and Rakic, P., 1978, Mechanisms of cortical development; a view from mutations in mice. In: Annual Review of Neuroscience, vol. 1, pp. 297–326, W.M. Cowan, Z.W. Hall, and E.R. Kandel, eds., Annual Reviews, Inc., Palo Alto.Google Scholar
  13. Caviness, V.S., Jr., and Sidman, R.L., 1973a, Retrohippocampal, hippocampal and related structures of the forebrain in the reeler mutant mouse, J. Comp. Neurol., 147:235–254.CrossRefGoogle Scholar
  14. Caviness, V.S., Jr., and Sidman, R.L., 1973b, Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: An autoradiographic analysis, J. Comp. Neurol., 148:141–152.CrossRefGoogle Scholar
  15. Caviness, V.S., Jr., and Yorke, C.H., Jr., 1976, Interhemispheric neocortical connections of the corpus callosum in the reeler mutant mouse: a study based on anterograde and retrograde methods, J. Comp. Neurol., 170:449–460.CrossRefGoogle Scholar
  16. Devor, M., Caviness, V.S., Jr. and Derer, P., 1975, A normally laminated afferent projection to an abnormally laminated cortex: some olfactory connections in the reeler mouse, J. Comp. Neurol., 164:471–482.CrossRefGoogle Scholar
  17. Drager, U.C., 1981, Observations on the organization of the visual cortex in the reeler mouse, J. Comp. Neurol., 201:555–570.CrossRefGoogle Scholar
  18. Drager, U.C., and Olsen, J.F., 1980, Origins of crossed and uncrossed retinal projections in pigmented and albino mice, J. Comp. Neurol., 191:383–412.CrossRefGoogle Scholar
  19. Fisken, R.A., Garey, L.J. and Powell, T.P.S., 1975, The intrinsic association and commissural connections of area 17 of the visual cortex, Philos. Trans. R. Soc. London Biol. Sci., 272:487–536.CrossRefGoogle Scholar
  20. Frost, D.O., and Caviness, V.S., Jr., 1980, Radial organization of thalamic projections to the neocortex in the mouse, J. Comp. Neurol., 194:369–393.CrossRefGoogle Scholar
  21. Guillery, R.W., 1969, An abnormal retinogeniculate projection in Siamese cats, Brain Res., 14:739–741.CrossRefGoogle Scholar
  22. Guillery, R.W., and Kaas, J.H., 1971, A study of normal and congeni-tally abnormal retinogeniculate projections in cats, J. Comp. Neurol., 143:73–100.CrossRefGoogle Scholar
  23. Hubel, D.H., and Wiesel, T.N., 1965, Receptive fields and functional architecture in two non-striate visual areas (18+19) of the cat, J. Neurophysiol., 28:229–289.Google Scholar
  24. Hubel, D.H., and Wiesel, T.N., 1971, Aberrant visual projection in the Siamese cat, J. Physiol. London, 218:33–62.Google Scholar
  25. Johnston, M.V., Grzanna, R., and Coyle, J.T., 1979, Methylazoxymethanol treatment of feta rats results in abnormally dense noradrenergic innervation of neocortex, Science, 203:369–371.CrossRefGoogle Scholar
  26. Landis, S.C., Shoemaker, W.J.; Schlumpf, M., and Bloom, P.E., 1075, Catechomalmines in mutant mouse cerebellum: Fluorescence microscopic and chemical studies, Brain Res., 93:253–266.CrossRefGoogle Scholar
  27. LeVail, J.H., Nixon, R.A., and Sidman, R.L., 1978, Genetic control of retinal ganglion cell projections, J. Comp. Neurol., 182:399–422.CrossRefGoogle Scholar
  28. Lemmon, V., and Pearlman, A.L., 1981, Does laminar position determine the receptive field properties of cortical neurons? A study of cortico-tectal cells in area 17 of the normal mouse and the reeler mutant, J. Neurosci., 1:83–93.Google Scholar
  29. Levitt, P., and Noebels, J.L., 1981, Mutant mouse tottering: selective increase of locus ceruleus axons in a defined single-locus mutation, Proc. Natl. Acad. Sci., 78:4630–4634.CrossRefGoogle Scholar
  30. Mangini, N.J., and Pearlman, A.L., 1980, Laminar distribution of receptive field properties in the primary visual cortex of the mouse, J. Comp. Neurol., 193:203–222.CrossRefGoogle Scholar
  31. Pinto-Lord, M.C., and Caviness, V.S., Jr., 1979, Determinants of cell shape and orientation: A comparative Golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice, J. Comp. Neurol., 187:49–70.CrossRefGoogle Scholar
  32. Pinto-Lord, M.C., Evrard, P., and Caviness, V.S., Jr., 1982, Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis, Dev. Brain Res., 4:379–393.CrossRefGoogle Scholar
  33. Rakic, P., 1971, Guidance of neurons migrating to the fetal monkey neocortex, Brain Res., 33:471–476.CrossRefGoogle Scholar
  34. Rakic, P., 1972, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol., 45:61–84.Google Scholar
  35. Rakic, P., Stensas, L.J., Sayre, E.P., Sidman, R.L., 1974, Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain, Nature, 250:31–34.CrossRefGoogle Scholar
  36. Sauer, F.C., 1935, Mitosis in the neural tube, J. Comp. Neurol., 62:377–405.Google Scholar
  37. Sauer, M.E., and Walker, V.E., 1959, Radioautographic study of interkinetic nuclear migration in the neural tube, Proc. Soc. Exp. Biol. Med., 101:557–560.Google Scholar
  38. Shatz, C.J., 1977, Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats, J. Comp. Neurol., 173:497–518.Google Scholar
  39. Shatz, C.J., 1979, Abnormal connections in the visual system of cats, Soc. Neurosci. Symp., 4:121–141.Google Scholar
  40. Shatz, C.J., and LeVay, S., 1979, Siamese cats: altered connections of visual cortex, Science, 204:328–330.CrossRefGoogle Scholar
  41. Sidman, R.L., Green, M.C., and Appel, S.H., 1965, Catalog of the Neurological Mutants of the Mouse, Harvard University Press, Cambridge, Mass.Google Scholar
  42. Sidman, R.L., Rakic, P., 1973, Neuronal migration, with special reference to developing human brain: A review, Brain Res., 62:1–35.CrossRefGoogle Scholar
  43. Silver, J., and Hughes, J.F.W., 1979, The relationship between morphogenetic cell death and the development of congenital anopthalmia, J. Comp. Neurol., 157:281–302.CrossRefGoogle Scholar
  44. Silver, J., Lorenz, S.E., Wahlsten, D. and Coughlin, J., 1982, Axonal guidance during development of the great cerebral commissures: descriptive studies, in vivo, on the role of preformed glial pathways, J. Comp. Neurol., in press.Google Scholar
  45. Silver, J., and Robb, R.M., 1979, Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia, Dev. Biol., 68:175–190.CrossRefGoogle Scholar
  46. Silver, J., and Sapiro, J., 1982, Axonal guidance during development of the optic nerve: The role of pigmented epithelia and other extrinsic factors, J. Comp. Neurol., 202:521–538.CrossRefGoogle Scholar
  47. Silver, J., and Sidman, R.L., 1980, A mechanism for the guidance and topographic patterning of retinal ganglion cell axons, J. Comp. Neurol., 189:101–111.CrossRefGoogle Scholar
  48. Simmons, P.A., Lemmon, V., and Pearlman, A.L., 1982, Afferent and efferent connections of the striate and extrastriate visual cortex of the normal and reeler mouse, J. Comp. Neurol., in press.Google Scholar
  49. Simmons, P.A., and Pearlman, A.L., 1982, Retinotopic organization of the striate cortex (ara 17) in the reeler mutant mouse, Dev. Brain Res., 4:124–126.CrossRefGoogle Scholar
  50. Stanfield, B.B., Caviness, V.S., Jr. and Cowan, W.M., 1979, The organization of certain afferents to the hippocampus and dentate gyrus in normal and reeler mice, J. Comp. Neurol., 185:461–484.CrossRefGoogle Scholar
  51. Wilson, M.E., 1968, Cortico-cortical connexions of the cat visual areas, J. Anat., 102:375–386.Google Scholar
  52. Yorke, C.H., Jr., and Caviness, V.S., Jr., 1975, Interhemispheric neocortical connectons of the corpus callosum in the normal mouse: a study based on anterograde and retrograde methods, J. Comp. Neurol., 164:233–246.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Verne S. CavinessJr.
    • 1
  • Alan L. Pearlman
  1. 1.Southard LaboratoryEunice Kennedy Shriver Center for Mental Retardation, Inc.WalthamUSA

Personalised recommendations