Development of Peptide Immunoreactivity in the Hippocampus, Visual Cortex and Retina

  • Christine Gall
  • Nicholas Brecha
  • John G. Parnavelas
Part of the NATO ASI Series book series (NSSA, volume 78)


During the last several years many studies have reported that biologically active peptides have an extensive distribution within the nervous system. At least twenty peptides have been described in the brain and periphery, each belonging to seemingly morphologically distinct systems and each presumably playing distinct functional roles (Emson, 1979; Hokfelt et al., 1980; Walsh, 1981). The majority of studies have examined adult tissues; there are relatively few studies which have examined the ontogeny of peptide-containing systems (Gash et al., 1980; Brecha et al., 1981B; De Vries et al., 1981; McDonald et al., a,b,c,d; Inagaki et al., 1982; Shiosaka et al., 1982; Gall et al., 1983).


Vasoactive Intestinal Polypeptide Mossy Fiber Amacrine Cell Inner Nuclear Layer Immunoreactive Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, D. and Deut, J., 1981, Development of the mossy fibers of the dentate gyrus: A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol., 195:51–86.CrossRefGoogle Scholar
  2. Aubert, M.L., Grumbach, M.M., Kaplan, S.L., 1977, The ontogenesis of human fetal hormones. IV. Somatostatin, luteinizing hormone releasing factor, and thyrotropin releasing factor in hypothalmus and cerebral cortex of human fetuses 10–22 weeks of age. J. Clinical Endocrinology and Metabolism, 44:1130–1141.CrossRefGoogle Scholar
  3. Barden, N., Merand, Y., Rouleau, D., Moore, S., Dockray, G.J. and Dupont, A., 1981, Regional distributions of somatostatin and cholecystokinin-like immunoreactivities in rat and bovine brain. Peptides, 2:299–302.CrossRefGoogle Scholar
  4. Bayer, S., 1980, Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J. Comp. Neurol., 190:87–114.CrossRefGoogle Scholar
  5. Beinfeld, M.C., 1980, An HPLC and RIA analysis of the cholecystokinin peptides in rat brain. Neuropeptides, 1:203–207.CrossRefGoogle Scholar
  6. Beinfeld, M.C., Meyer, D.K. and Brownstein, M.J., 1980, Cholecystokinin octapeptide in the rat hypothalamo-neuohypophysial system. Nature, 288:376–378.CrossRefGoogle Scholar
  7. Beinfeld, M.C. and Palkovits, M., 1981, Distribution of cholecystokinin (CCK) in the hypothalamus and limbic system of the rat. Neuropeptides, 2:123–129.CrossRefGoogle Scholar
  8. Beinfeld, M.C. and Palkovits, M., 1982, Distribution of cholecystokinin (CCK) in the rat lower brain stem nuclei. Brain Research, 238:260–265.CrossRefGoogle Scholar
  9. Bennett-Clarke, C., Romagnano, M.A. and Joseph, S.A., 1980, Distribution of somastatin in the rat brain: telencephalon and dien-cephalon. Brain Research, 188:473–486.CrossRefGoogle Scholar
  10. Besson, J., Rotsztejn, W., Laburthe, M., Epelbaum, J., Beaudet, A., Kordon, C. and Rosselin, G., 1979, vasoactive intestinal peptide (VIP): brain distribution, subcellular localization and effect of deafferentiation of the hypothalamus in male rats. Brain Research, 165:79–85.CrossRefGoogle Scholar
  11. Bliss, T.V., Chung, S.H. and Sterling, R.V., 1974, Structural and functional development of the mossy fiber system in the hippocampus of the postnatal rat. J. Physiol., 239:92–94.Google Scholar
  12. Blue, M.E. and Parnavalas, J.G., 1982, The effect of neonatal 6-hydroxydopamine treatment on synaptogenesis in the visual cortex of the rat. J. Comp. Neurol., 205:199–205.CrossRefGoogle Scholar
  13. Boycott, B.B. and Dowling, J.E., 1969, Organization of the primate retina: Light microscopy. Phil. Trans. R. Soc. Lond. B, 255:109–184.CrossRefGoogle Scholar
  14. Brecha, N., 1983, A review of retinal neurotransitters: Histochemical and biochemical studies. In: Chemical Neuroanatomy (edited by P.C. Emson), New York, Raven Press, pp. 85–129.Google Scholar
  15. Brecha, N., Cilluffo, M., Yamada, T., 1982, Localization and characterization of glucagon-like immunoreactivity in the retina. Soc. Neurosci. Abs, 8:46.Google Scholar
  16. Brecha, N., Eldred, W., Kuljis, R.P. and H.J. Karten, 1983, Identification and localization of biologically active peptides in the vertebrate retina. In: Progress in Retinal Research (edited by N. Osborne and G. Chader), New York, Plenum Press, in press.Google Scholar
  17. Brecha, N.C. and Karten, H.J., 1983, Identification and localization of neuropeptides in the vertebrate retina. In: Brain Peptides (edited by D. Kreiger, M. Brownstein and J. Martin), New York, Academic Press, in press.Google Scholar
  18. Brecha, N., Karten, H.J. and Davis, B., 1980, Localization of neuro-eptides, including vasoactive intestinal polypeptide and glucagon within the adult and developing retina. Soc. Neurosci. Abs., 6:346.Google Scholar
  19. Brecha, N., Karten, H.J. and Laverack, C., 1979, Enkephalincontaining amacrine cells in the avian retina: Immunohisto-chemical localization. Proc. Natl. Acad. Sci. USA, 76:3010–3014.CrossRefGoogle Scholar
  20. Brecha, N., Karten, H.J. and Schenker, C., 1981A, The localization of neurotensin-like and somatostatin-like immunoreactivity within amacrine cells of the retina. Neuroscience, 6:1329–1340.CrossRefGoogle Scholar
  21. Brecha, N., Sharma, S.C. and Karten, H.J., 1981B, Localization of substance P-like immunoreactivity in the adult and developing goldfish retina. Neuroscience, 6:2736–2746.Google Scholar
  22. Brownstein, M., Arimura, A., Sato, H., Schally, A.V., Kizer, J.S., 1975, The regional distribution of somatostatin in the rat brain. Endocrinology, 96:1456–1461.CrossRefGoogle Scholar
  23. Buckerfield, M., Oliver, J., Chubb, I.W., Morgan, I.G., (1981), Somatostatin-like immunoreactivity in amacrine cells of the chicken retina. Neuroscience, 6:689–695.CrossRefGoogle Scholar
  24. Cajal, S., Ramon y, 1893, La retine des vertebres. La Cellule, 9:17–257.Google Scholar
  25. Cajal, S., Ramon y, 1911, “Histologie du system Nerveux de l’homme et vertebres”. Maloine, Paris.Google Scholar
  26. Castro, G. de O., 1966, Branching pattern of amacrine cell processes. Nature, 212:832–833.CrossRefGoogle Scholar
  27. Choy, V.J. and Watkins, W.B., 1979, Maturation of the hypothalamoneurohypophysial system. Cell Tiss. Res., 197:325–336.CrossRefGoogle Scholar
  28. Cilluffo, M., Yamada, T. and Brecha, N., 1983, Soc. Neurosci. Abs., 9, in press.Google Scholar
  29. Coyle, J., Molliver, M., 1977, Major innervation of newborn rat cortex by monoaminergic neurons. Science, 196:444–447.CrossRefGoogle Scholar
  30. De Vries, G., Buij’s, R. and Swaab, D., 1981, Ontogency of the vaso-pressinergic neurons of the suprachiasmatic nucleus and their extra hypothalamic projections in the rat brain-presence of a sex difference in the lateral septum. Brain Res., 218:67–78.CrossRefGoogle Scholar
  31. Dockray, G.H., 1980, Cholecystokinins in rat cerebral cortex: identification, purification and characterization by immunochemical methods. Brain Res., 188:155–165.CrossRefGoogle Scholar
  32. Emson, P.C., 1979, Peptides as neurotransmitter candidates in the mammalian CNS. Progress in Neurobio1ogy, 13:61–116.CrossRefGoogle Scholar
  33. Emson, P.C., Gilbert, R.F., Lorén, I., Fahrenkrug, J.F., Sundler, F. and Schaffalitzky De Muckadel, O., 1979, Development of vasoactive intestinal polypeptide (VIP) containing neurons in the rat brain. Brain Res., 177:437–444.CrossRefGoogle Scholar
  34. Emson, P.C., Hunt, S.P., Rehfeld, J.F., Golterman, N. and Fahrenkrug, J., 1980, Cholecystokinin and vasoactive intestinal polypeptide in the mammalian CNS: distribution and possible physiological roles. In: Neural Peptides and Neuronal Communication (edited by E. Costa and M. Trabucchi), New York, Raven Press, pp. 63–74.Google Scholar
  35. Emson, P.C., Rehfeld, J.F. and Rossor, M.N., 1982, Distribution of cholecystokinin-like peptides in the human brain. J. Neurochem., 38:1177–1179.CrossRefGoogle Scholar
  36. Fahrenkrug, J., 1979, Vasoactive intestinal polypeptide: measurement, distribution and putative neurotransmitter function. Digestion, 19:149–169.CrossRefGoogle Scholar
  37. Feldman, M.L. and Peters, A., 1978, The forms of non-pyramidal neurons in the visual cortex of the rat. J. Comp. Neurol., 179:761–794.CrossRefGoogle Scholar
  38. Feldman, S.C. and Lichtenstein, E., 1980, Morphology and distribution of somatostatin-containing neurons in the guinea pig neocortex. Anatomical Record, 196:55A.Google Scholar
  39. Feiten, D.L., Hallman, H. and Jonsson, G., 1982, Evidence for a neurotrophic role in noradrenaline neurons in the postnatal development of rat cerebral cortex. J. Neurocytol., 11:119–135.CrossRefGoogle Scholar
  40. Finley, J.C.W., Grossman, G.H., Dimeo, P. and Petrusz, P., 1978, Somatostatin-containing neurons in the rat brain: widespread distribution revealed by immunocytochemistry after pretreatment with pronase. Am. J. Anatomy, 153:483–488.CrossRefGoogle Scholar
  41. Fricke, R. and Cowan, W.M., 1977, An autoradiographic study of the development of the entorhinal and hippocampal afferents to the dentate gyrus of the rat. J. Comp. Neurol., 173:231–250.CrossRefGoogle Scholar
  42. Fuxe, K., Hokfelt, T., Said, S.I. and Mutt, V., 1977, Vasoactive intestinal polypeptide and the nervous system: immunohisto-chemical evidence of localization in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neurosci. Letters, 5:241–246.CrossRefGoogle Scholar
  43. Gall, C., Brecha, N., Chang, K.-J. and Karten, H.J., 1981, Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus. J. Comp. Neurol., 198:335–350.CrossRefGoogle Scholar
  44. Gall, C., Brecha, N., Chang, K.-J. and Karten, H.J., 1983, Ontogeny of enkephalin-like immunoreactivity in the rat hippocampus. Neurosci., in press.Google Scholar
  45. Gash, H., Sladek, C. and Scott, D., 1980, Cytodifferentiation of the supraoptic nucleus correlated with vasopressin synthesis in the rat. Brain Res., 181:345–355.CrossRefGoogle Scholar
  46. Goldstein, A., Tachibana, S., Lowney, L., Munkapiller, M. and Hood, L., 1979, Dynophin (1–13) an extraordinarily potent apioid peptide. Proc. Natl. Acad. Sci. USA, 76:6666–6670.CrossRefGoogle Scholar
  47. Greenwood, R.S., Godar, S.E., Reaves, T.A. and Harward, J.N., 1981, Cholecystokinin in hippocampal pathways. J. Comp. Neurol., 203:335–350.CrossRefGoogle Scholar
  48. Handelmann, G.E., Meyer, D.K., Beinfeld, M.C. and Oertel, W.H., 1981, CCK-containing terminals in the hippocampus are derived from intrinsic neurons: an immunohistochemical and radioimmunological study. Brain Research, 244:180–184.CrossRefGoogle Scholar
  49. Hjorth-Simonsen, A., 1972, Projections of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J. Comp. Neurol., 146:219–232.CrossRefGoogle Scholar
  50. Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M., 1980, Peptidergic neurons. Nature, 284:515–521.CrossRefGoogle Scholar
  51. Humbert, J., Pradelles, P., Gros, C. and Dray, F., 1979, Enkephalin-like products in an embryonic chicken retina. Neurosei. Letters, 12:259–263.CrossRefGoogle Scholar
  52. Ingaki, S., Sakanaka, M., Shiosaka, S., Sneba, E., Takatsuki, K., Takagi, H., Kawai, Y., Minagawa, H. and Takyama, M., 1982, Ontogeny of substance P-containing neuron system in the rat: immunohistochemical analysis: I. Forebrain and upper brainstem. Neuroscience, 7:251–277.CrossRefGoogle Scholar
  53. Jones, E.G. and Hartman, B.K., 1978, Recent advances in neuroana-tomical methodology. Ann. Rev. Neurosci., 1:215–297.CrossRefGoogle Scholar
  54. Karten, H.J. and Brecha, N., 1980, Localization of substance P immunoreactivity in amacrine cells of the retina, Nature, 283:87–88.CrossRefGoogle Scholar
  55. Khachaturian, H., Lewis, M.E., Hollt, V. and Watson, S.J., 1983, Telencephalic enkephalinergic systems in the rat brain, J. Neurosci., 3:844–855.Google Scholar
  56. Kolb, H., Nelson, R. and Mariani, A., 1981, Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study, 21:1081–1114.Google Scholar
  57. Krisch, B., 1980, Differing immunoreactivities of somatostatin in the cortex and the hypothalamus of the rat. Cell Tiss. Res., 212:457–264.Google Scholar
  58. Kuwayama, Y., Ishimoto, I., Fukuda, M., Shimizu, Y., Shiosaka, S., Inagaki, S., Senba, E., Sakanaka, M., Takagi, H., Takatsuki, K., Hara, Y., Kawai, Y. and Tohyama, M., 1982, Overall distribution of glucagon-like immunoreactivity in the chicken retina: an immunohistochemical study with flat-mounts. Invest. Ophthal. Vis. Sci., 22:681–686.Google Scholar
  59. Laatsch, R.H. and Cowan, W.M., 1965, Electron microscopic studies of the dentate gyrus of the rat. I. Normal structure with special reference to synaptic organization. J. Comp. Neurol., 128:359–396.CrossRefGoogle Scholar
  60. Laemle, L.K., Feldman, S.C. and Lichtenstein, E., 1981, Somatostatin-like immunoreactivity in the rodent visual system. Soc. Neurosci. Abs., 7:761.Google Scholar
  61. Lorén, I., Alumets, J., Hakanson, R. and Sundler, F., 1979, Immuno-reactive pancreatic polypeptide (PP) occurs in the central and peripheral nervous system: preliminary immunocytochemical observations. Cell Tiss. Res., 200:179–186.CrossRefGoogle Scholar
  62. Lorén, I., Emson, P.C., Fahrenkrug, J., Fjorklund, A., Alumets, J., Hakanson, R. and Sundler, F., 1979, Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience, 4:1953–1976.CrossRefGoogle Scholar
  63. Lorente de No, R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study of the amnionic system. J. Psychol. Neurol. (Leipzig), 46:113–177.Google Scholar
  64. Loy, R., Lynch, G. and Cotman, C.W., 1977, Development of afferent lamination in the fascia dentata of the rat. Brain Res., 121:220–243.CrossRefGoogle Scholar
  65. McDonald, J.K., Parnavalas, J.G., Karamanlidis, A.N., Brecha, N. and Koenig, J., 1982a, The morphology and distribution of peptide containing neurons in the adult and developing visual cortex of the rat. I. Somatostatin. J. Neurocytol., 11:809–824.CrossRefGoogle Scholar
  66. McDonald, J.K., Parnavalas, J.G., Karamanlidis, A.N. and Brecha, N., 1982b, The morphology and distribution of peptide containing neurons in the adult and developing visual cortex of the rat. II. Vasoactive intestinal polypeptide. J. Neurocytol., 11:825–837.CrossRefGoogle Scholar
  67. McDonald, J.K., Parnavelas, J.G., Karamanlidis, A.N., Rosenguist, G. and Brecha, N., 1982c, The morphology and distribution of peptide-containing neurons in the adult and developing visual cortex of the rat. III. Cholecystokinin. J. Neurocytol., 11:881–895.CrossRefGoogle Scholar
  68. McDonald, J.K., Parnavelas, J.G., Karamanlidis, A.N. and Brecha, N., 1982d, The morphology and distribution of peptide-containing neurons in the adult and developing cortex of the rat. IV. Avian pancreatic polypeptide. J. Neurocytol., 11:985–995.CrossRefGoogle Scholar
  69. McGinty, J.F., Aguriksen, S.J., Goldstein, A., Terenius, L. and Bloom, F.E., 1983, Dynorphin is contained within hippocampal mossy fibers; immunochemical alterations after kianic acid administration and colchicine induced neurotoxicity. Proc. Natl. Acad. Sci. USA, 80:589–593.CrossRefGoogle Scholar
  70. McGregor, G.P., Woodhams, P.L., O’Shaughnessy, D.J., Ghatei, M.A., Polak, J.M. and Bloom, S.R., 1982, Developmental changes in bombesin, substance P, somatostatin and vasoactive intestinal polypeptide in the rat brain. Neurosci. Lett., 28:21–27.CrossRefGoogle Scholar
  71. Martino, E., Seo, H., Lernmark, A. and Refetoff, S., 1980, Ontogenetic patterns of thyrotropin-releasing hormone-like material in rat hypothalamus, pancreas and retina: selective effect of light deprivation. Proc. Natl. Acad. Sci. USA, 77:4345–4348.CrossRefGoogle Scholar
  72. Merchenthaler, I., Vigh, S., Petrusz, P. and Schally, A.V., 1982, Immunocytochemical localization of coritcoptropin-releasing factor (CRF) in the rat brain. Am. J. Anat., 165:385–396.CrossRefGoogle Scholar
  73. Morgan, I.G., Oliver, J. and Chubb, I.W., 1981, The identification and development of amacrine cells containing somatostatin-like immunoreactivity in chicken retina. Soc. Neurosci. Abs., 7:273.Google Scholar
  74. Morrison, J.H., Magistretti, P.J., Benoit, R. and Bloom, F.E., 1981, The immunohistochemical characterization of somatostatin (SS) and vasoactive intestinal polypeptide (VIP) neurons within the cerebral cortex. Soc. Neurosci. Abs., 7:99.Google Scholar
  75. Nishimura, Y., 1980, Determination of the developmental pattern of retinal ganglion cells in chick embryos by Golgi impregnation and other methods. Anat. Embryol., 158:329–347.CrossRefGoogle Scholar
  76. Osborne, N.N., Nicholas, D.A., Dockray, G.J. and Cuello, A.C., 1982, Cholecystokinin and substance P immunoreactivity in retinas of rats, froas, lizards and chicks. Exp. Eye Res., 34:639–649.CrossRefGoogle Scholar
  77. Parnavelas, J.G., 1984, Physiological properties of identified neurons. In: The Cerebral Cortex (edited by E.G. Jones and A. Peters), New York, Plenum Press (in press).Google Scholar
  78. Parnavelas, J.G., Bradford, R., Mounty, E.J. and Lieberman, A.R., 1978, The development of non-pyramidal neurons in the visual cortex of the rat. Anatomy and Embryology, 155:1–14.CrossRefGoogle Scholar
  79. Parnavelas, J.G. and McDonald, M.K., 1983, The cerebral cortex. In: Chemical Neuroanatomy (edited by P.C. Emson), New York, Raven Press, 505–549.Google Scholar
  80. Peters, A. and Fairne, A., 1978, Smooth and sparsely-spined stellate cells in the visual cortex of the rat: A study using a combined Golgi-electron microscope technique. J. Comp. Neurol., 181:129–172.Google Scholar
  81. Peters, A. and Kimerer, L.M., 1981, Bipolar neurons in rat visual cortex: a combined Golgi-electron microscope study. J. Neurocytol., 10:921–946.CrossRefGoogle Scholar
  82. Rager, G., 1979, The cellular origin of the b-Wave in the electro-retinogram — a developmental approach. J. Comp. Neurol., 188:225–244.CrossRefGoogle Scholar
  83. Sachs, H., Pearson, D. and Nureddin, A., 1975, Guinea pig neuro-physin: isolation, developmental aspects, biosynthesis in organ culture. Ann. N.Y. Acad. Sci., 248:36–45.CrossRefGoogle Scholar
  84. Shiosaka, S., Takatsuki, K., Sakanaka, M., Inagaki, S., Takagi, H., Senba, E., Kawai, Y., Iida, H., Minagawa, H., Hara, V., Matsuzaki, T. and Tohyama, M., 1982, Ontogeny of somatostatin containing neuron system of the rat: immunohistochemical analysis. II. Forebrain and diencephalon. J. Comp. Neurol., 204:211–224.CrossRefGoogle Scholar
  85. Silverman, A.J., 1975, The hypothalamic magnocellular neurosecretory system of the guinea pig. II. Immunohistochemical localization of neurophysin and vasopressin in the fetus. Am. J. Anat., 144:455–460.Google Scholar
  86. Sims, K.B., Hoffman, D.L., Said, S.I. and Zimmerman, E.A., 1980, Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res., 106:165–183.CrossRefGoogle Scholar
  87. Steward, O., 1980, Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol., 167:285–314.CrossRefGoogle Scholar
  88. Swanson, L.W., Sawchenko, P.E., River, J. and Vale, W.W., 1983, Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology, 36:165–186.CrossRefGoogle Scholar
  89. Sundler, F., Maghimzadeh, E., Hakausou, R., Ekeland, M. and Emson, P., 1983, Nerve fibers in the gut and pancreas of the rat displaying neuropeptide Y immunoreactivity. Intrinsic and extrinsic origin. Cell Tiss. Res., 230:487–493.CrossRefGoogle Scholar
  90. Takatsuki, K. Shiosaka, S., Sakanaka, M., Inagaki, S., Senba, E., Takagi, H. and Tohyama, M., 1981, Somatostatin in the auditory system of the rat. Brain Res., 213:211–216.CrossRefGoogle Scholar
  91. Tatemoto, K., 1982, Neuropeptide Y: Complete amino acid seguence of the brain peptide. Proc. Natl. Acad. Sci. USA, 79:5485–5489.CrossRefGoogle Scholar
  92. Tatemoto, K., Carlguist, M. and Mutt, V., 1982, Neuropeptide Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature, 296:659–660.CrossRefGoogle Scholar
  93. Torngvist, K., Lorén, I., Hakanson, R. and Sundler, F., 1981, Peptide-containing neurons in the chicken retina. Exp. Eye Res., 33:55–64.CrossRefGoogle Scholar
  94. Vincent, S.R., Skirboll, L., Hokfelt, T., Johansson, O., Lundberg, J.M., Eide, R.P., Terenius, L. and Kimmel, J., 1982, Coexistence of somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivity in some forebrain neurons. Neuroscience, 7:439–466.CrossRefGoogle Scholar
  95. Walsh, J.H., 1981, Hormones and peptides in: Physiology of the Gastrointestinal Tract (edited by L.R. Johnson), New York, Raven Press, 59–144.Google Scholar
  96. Watson, S., Khachaturian, H., Akil, H., Coy, D. and Goldstein, A., 1982, Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science, 218:1134–1136.CrossRefGoogle Scholar
  97. Witkovsky, P., 1963, An ontogenetic study of retinal function in the chick. Vision Res., 3:341–355.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Christine Gall
    • 1
  • Nicholas Brecha
    • 2
    • 3
  • John G. Parnavelas
    • 4
  1. 1.Department of AnatomyUniversity of California at IrvineIrvineUSA
  2. 2.Center for Ulcer Research and EducationV.A. Medical Center-WadsworthLos AngelesUSA
  3. 3.Department of Medicine Brain Research Institute and Jules Stein Eye Institute School of MedicineUniversity of California at Los AngelesLos AngelesUSA
  4. 4.Department of Anatomy and EmbryologyUniversity College LondonLondonEngland

Personalised recommendations