Biomembranes pp 193-224 | Cite as

Hydrophobic Ions, Carriers and Pore Formers in Lipid Bilayers as Studied by Fast Kinetic Methods

  • Günther Stark
Part of the NATO ASI Series book series (NSSA, volume 76)


Planar lipid membranes have proved as an in vitro system well suited for the study of the physical principles of ion transport through biological membranes. The black lipid films — as they are frequently called because of their “black” appearance in the reflected light — may be considered in a way as a curious phenomenon of nature. Since these structures have a thickness of only about twice the length of a lipid molecule — while extending up to several millimeters in the two other dimensions of space — one may wonder at their stable existence. It was found that a sufficient stability, i.e. sufficient lifetime of the membrane, usually depends on an adequate amount of residual solvent. According to a technique originally developed by Mueller et al.1, black lipid films may be formed by spreading a small amount of a lipid solution in an alkane solvent (e.g. decane) across a hole in a teflon septum. Montal and Mueller2 have shown that a lipid bilayer may also be obtained by apposition of two monomolecular lipid layers on the water surfaces adjacent to the two sides of the teflon septum. The membranes formed by the technique of Montal are almost solvent-free. The lifetime of membranes with a diameter exceeding a few tenths of a millimeter is, however, drastically impaired.


Lipid Bilayer Membrane Unstirred Layer Interfacial Concentration Translocation Rate Current Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Mueller, D.O. Rudin. H.T. Tien and W.D. Wescott, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194: 979 (1962).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Montal and P. Mueller, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc.Nat.Acad.Sci.U.S.A. 69: 3561 (1972).CrossRefGoogle Scholar
  3. 3.
    R.C. Bean, W.C. Shepherd, H. Chan and J. Eichner, Discrete conductance fluctuations in lipid bilayer protein membranes, J.Gen.Physiol. 53: 741 (1969).PubMedCrossRefGoogle Scholar
  4. 4.
    J.E. Hall, Channels in black lipid films, in “Membrane transport in biology”, Vol I, G. Giebisch, D.C. Tosteson, H.H. Ussing, eds, Springer, Berlin (1978).Google Scholar
  5. 5.
    R. Latorre and O. Alvarez, Voltage-dependent channels in planar lipid bilayer membranes, Physiol.Rev. 61: 77 (1981).PubMedGoogle Scholar
  6. 6.
    M. Eigen and L. De Maeyer, Relaxation methods, in: “Technique of organic chemistry”, Vol. VIII, Part I I, S.L. Friess, E.S. Lewis, A. Weissberger, eds,Interscience, New York (1963).Google Scholar
  7. 7.
    P. Läuger, R. Benz, G. Stark, E. Bamberg, P.C. Jordan, A. Fahr and W. Brock, Relaxation Studies of ion transport systems in lipid bilayer membranes, Quarterly Rev.Biophys. 14: 513 (1981).CrossRefGoogle Scholar
  8. 8.
    W. Knoll and G. Stark, Temperature jump experiments on thin lipid membranes in the presence of valinomycin, J.Membrane Biol. 37: 13 (1977).CrossRefGoogle Scholar
  9. 9.
    W. Brock, G. Stark and P.C. Jordan, A laser-temperature-jump method for the study of the rate of transfer of hydrophobic ions and carriers across the interface of thin lipid membranes, Biophys.Chem. 13: 329 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Knoll and G. Stark, An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes, J.Membrane Biol. 25: 249 (1975).CrossRefGoogle Scholar
  11. 11.
    G. Stark and B.F. Gisin, Kinetics of ion transport in lipid membranes induced by lysine-valinomycin and derivatives, Biophys.Struct.Mech. 6: 39 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    P.C. Jordan and G. Stark, Kinetics of transport of hydrophobic ions through lipid membranes including diffusion polarization in the aqueous phase, Biophys.Chem. 10: 273 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    J.Y. Lapointe and R. Laprade, Kinetics of carrier-mediated ion transport in two new types of solvent-free lipid bilayers, Biophys.J. 39: 141 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Benz, P. Läuger and K. Janko, Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies, Biochim.Biophys.Acta 455: 701 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Benz and P. Läuger, Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique, J.Membrane Biol. 27: 171 (1976).CrossRefGoogle Scholar
  16. 16.
    R. Benz and U. Zimmermann, Pulse-length dependence of the electrical breakdown in lipid bilayer membranes, Biochim. Biophys.Acta 597: 637 (1980).CrossRefGoogle Scholar
  17. 17.
    H. Ruf and E. Grell, Chemical relaxation spectrometry, in: “Membrane spectroscopy”, E. Grell ed., Springer Berlin (1981).Google Scholar
  18. 18.
    J.F. Holzwarth, Laser temperature jump, in: “Technique and application of fast reactions in solution”, W.J. Gettins, E. Wyn-Jones, eds, Reidel,Dortrecht (1979).Google Scholar
  19. 19.
    R. Collander and H. Bärlund, Permeabilitätsstudien an Chara Ceratophylla, Acta Botan.Fenn. 11: 1 (1933).Google Scholar
  20. 20.
    O.S. Andersen, Permeability properties of unmodified lipid bilayer membranes, in “Membrane transport in biology”, Vol. I, G. Giebisch, D.C. Tosteson, H.H. Ussing, eds, Springer, Berlin (1978).Google Scholar
  21. 21.
    M. Wolosin, H. Ginsburg, W.R. Lieb and W.D. Stein, Diffusion within egg lecithin bilayers resemble that within soft polymers, J.Gen.Physiol. 71: 93 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Orbach and A. Finkelstein, The nonelectrolyte permeability of planar lipid bilayer membranes. J.Gen.Physiol. 75: 427 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    B.J. Zwolinsky, H. Eyring and C.E. Reese, Diffusion and membrane permeability, J.Phys.Chem. 53: 1426 (1949).CrossRefGoogle Scholar
  24. 24.
    S.A. McLaughlin, Electrostatic potentials at membrane-solution interfaces, in: “Current topics in membranes and transport”, Vol. 9, F. Bronner, A. Kleinzeller, eds, Academic Press, New York (1977).Google Scholar
  25. 25.
    P. Smejtek and M.Paulis-Illangasekare, Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid, Biophys.J. 26: 441 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Awiscus and G. Stark, in preparation.Google Scholar
  27. 27.
    G. Szabo, G. Eisenmann, R. Laprade, S.M. Ciani and S. Krasne, Experimentally observed effects of carriers on the electrical properties of bilayer membranes - equilibrium domain, in: “Membranes”, Vol. 2, G. Eisenmann, eds., M. Dekker, New York (1973).Google Scholar
  28. 28.
    G. Stark, Carrier-mediated ion transport across thin lipid membranes, in “Membrane transport in biology”,Vol. I, G. Giebisch, D.C. Tosteson, H.H. Ussing, eds, Springer, Berlin (1978).Google Scholar
  29. 29.
    S.B. Hladky, The carrier mechanism, in: “Current topics in membranes and transport”, Vol. 12, F. Bronner, A. Kleinzeller, eds, Academic Press, New York (1979).Google Scholar
  30. 30.
    S.A. McLaughlin and J.P. Dilger, The transport of protons across membranes by weak acids, Physiol.Rev. 60/3:825 (1980).Google Scholar
  31. 31.
    De Felice, Introduction to membrane noise, Plenum Press, New York (1981).Google Scholar
  32. 32.
    S.B. Hladky and D.A. Haydon, Ion transfer across lipid membranes in the presence of gramicidin. I. Studies on the unit conductance channel, Biochim.Biophys.Acta 274: 294 (1972).PubMedCrossRefGoogle Scholar
  33. 33.
    D.W. Urry. The gramicidin transmembrane channel: A proposed π(LD D) helix, Proc.Nat.Acad.Sci.U.S.A. 68: 672 (1971).CrossRefGoogle Scholar
  34. 34.
    E. Bamberg and P. Läuger, Channel formation kinetics of gramicidin A in lipid bilayer membranes, J.Membrane Biol. 11: 177 (1973).CrossRefGoogle Scholar
  35. 35.
    E. Bamberg, H. Alpes, H.-J. Apell, R. Benz, K. Janko, H.-A. Kolb, P. Läuger and E. Gross, Studies on the gramicidin channel, in: “Biochemistry of membrane transport”, G. Semenza and E. Carafoli, eds, Springer, Berlin (1977).Google Scholar
  36. 36.
    H.-A.Kolb, P. Läuger and E. Bamberg, Correlation analysis of electrical noise in lipid membranes: Kinetics of gramicidin A channels, J. Membrane Biol. 20: 133 (1975).CrossRefGoogle Scholar
  37. 37.
    E. Bamberg, H.-J.Apell, H. Alpes, E. Gross, J.L. Morell, J.F. Harbaugh, K. Janko and P. Läuger, Ion channels formed by chemical analogs of gramicidin A. Fed.Proc. 37: 2633 (1978).Google Scholar
  38. 38.
    D. Busath and G. Szabo, Gramicidin forms multi-state rectifying channels, Nature 294: 371 (1981).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Sträßle, Diplomarbeit, Universität Konstanz (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Günther Stark
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations