Biomembranes pp 159-178 | Cite as

Hydrophobic Labelling and Cross-Linking of Membrane Proteins

  • Peter Zahler
  • Hans Sigrist
Chapter
Part of the NATO ASI Series book series (NSSA, volume 76)

Abstract

With respect to the general background of membrane modification we refer to our recent review article in “Membranes and Transport”, Vol. 1, edited by A.N. Martonosi, Plenum Press, New York and London, 1982, pages 173–184. From this article we include a list of reagents which have successively been used by various authors for the exploration of membrane structure and function (Tables 1 and 2 at the end of this article).

Keywords

Phenyl Lysine Oligomer Polypeptide Thiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabantchik, Z. I., Knauf, P. A., and Rothstein, A., 1978, The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of “probes”, Biochim. Biophys. Acta, 515: 239.Google Scholar
  2. Decker V. R., and Carraway, K. L., 1975, Circular dichroism of erythrocyte membrane glycoproteins, Biochim. Biophys. Acta, 386: 52.Google Scholar
  3. Dellweg, H. G., and Sumper, M., 1978, Selective formation of bacterio-opsin trimers by chemical cross-linking of purple membrane, FEBS Lett., 90: 123.PubMedCrossRefGoogle Scholar
  4. Deuticke, B., 1977, Properties and structural basis of simple diffusion pathways in the erythrocyte membrane, Rev. Physiol. Biochem. Pharmacol., 78: 1.PubMedCrossRefGoogle Scholar
  5. Drickamer, K., 1977, Fragmentation of the band 3 polypep tide from human erythrocyte membranes, J. Biol. Chem., 252: 6909.PubMedGoogle Scholar
  6. Drobnica, L., Kristian, P., and Augustin, J., 1977, The Chemistry of the -NCS group, in: “The Chemistry of Cyanates and Their Thioderivatives”, S. Patai, ed., Part 2, pp. 1002–1222, Wiley, New York.Google Scholar
  7. Ehrenberg, E., and Lewis, A., 1978, The pK of Schiff-base deprotonation in bacteriorhodopsin, Biochem. Biophys. Res. Commun., 82: 1154.Google Scholar
  8. Grinstein, S., Ship, S., and Rothstein, A., 1978, Anion transport in relation to proteolytic dissection of band 3 protein, Biochim. Biophys. Acta, 507: 294.Google Scholar
  9. Henderson, R., 1977, The purple membrane from halobacterium halobium, Ann. Rev. Biophys. Bioeng., 6: 87.CrossRefGoogle Scholar
  10. Henderson, R., Jubb, J. S., and Whytock, S., 1978, Specific labelling of the protein and lipid on the extra-cellular surface of purple membrane, J. Mol. Biol., 123: 259.PubMedCrossRefGoogle Scholar
  11. Ho, M. K., and Guidotti, G., 1975, A membrane protein from human erythrocytes involved in anion exchange, J. Biol. Chem., 250: 675.PubMedGoogle Scholar
  12. Jennings, M. L., and Passow, H., 1979, Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4’-diisothiocyano dihydrostilbene2,2’-disulfonate, Biochim. Biophys. Acta, 554: 498.Google Scholar
  13. Kempf, Ch., Sigrist, H., and Zahler, P., 1979, Covalent modification of human erythrocyte band 3 and phosphate transport inhibition of hydrophobic arylisothiocyanates, Experientia, 35: 937.Google Scholar
  14. Kempf, Ch., Sigrist, H., and Zahler, P., 1981b, 4-N,N-Dimethylamino-azobenzene-4’-isothiocyanate: a chromophoric, hydrophobic reagent for probing membrane-buried segments of intrinsic proteins, FEBS Lett., 124:225.Google Scholar
  15. Khorana, H. G., Gerber, G. E., Herliky, W. C., Gray, C. P., Anderegg, T. J., Nihei, K., and Biemann, K., 1979, Amino acid sequence of bacteriorhodopsin, Proc. Natl. Acad. Sci. USA, 76: 5046.PubMedCrossRefGoogle Scholar
  16. Kimura, K., Mason, T. L., and Khorana, H. G., 1982, Immunological probes for bacteriorhodopsin. Identification of three distinct antigenic sites on the cytoplasmic surface, J. Biol. Chem., 257: 2859.PubMedGoogle Scholar
  17. Konishi, T., and Packer, L., 1976, Light-dark conformational states in bacteriorhodopsin, Biochem. Biophys. Res. Commun., 72: 1437.Google Scholar
  18. Konishi, T., and Packer, L., 1977, Chemical modification of bacteriorhodopsin with N-bromosuccinimide, FEBS Lett., 79: 369.PubMedCrossRefGoogle Scholar
  19. Konishi, T., and Packer, L.,1978a,A proton channel in bacteriorhodopsin, FEBS Lett., 89:333.Google Scholar
  20. Konishi, T., and Packer, L.,1978b,The role of tyrosine in the proton pump of bacteriorhodopsin, FEBS Eett., 92:1.Google Scholar
  21. Lewis, A., Marcus, M. A., Ehrenberg, B., and Crespi, H., 1978, Experimental evidence for secondary proteinchromophore interactions at the Schiff base linkage in bacteriorhodopsin: Molecular mechanism for proton pumping, Proc. Natl. Acad. Sci. USA, 75: 4642.PubMedCrossRefGoogle Scholar
  22. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA, 69: 1445.PubMedCrossRefGoogle Scholar
  23. Marchesi, V. T., Furthmayr, H., and Tornita, M., 1976, The red cell membrane, Ann. Rev. Biochem., 45: 667.PubMedCrossRefGoogle Scholar
  24. Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature New Biol., 233: 149.PubMedGoogle Scholar
  25. Ovchinnikov, Yu. A., Abdulaev, N. G., Feigina, M. Yu., Kiselev, A. V., and Lobanov, N. A., 1979, The structural basis of the functioning of bacteriorhodopsin: An overview, FEBS Lett., 100: 129.CrossRefGoogle Scholar
  26. Rakitzis, E. T., Gilligan, P. J., and Hoffmann, J. F., 1978, Kinetic analysis of the inhibition of sulfate transport in human red blood cells by isothiocyanates, J. Membr. Biol., 41: 101.PubMedCrossRefGoogle Scholar
  27. Rothstein, A., Grinstein, S., Ship, S., and Knauf, P. A., 1978, Asymmetry of functional sites of the erythrocyte anion transport protein, Trends Biochem. Sci., 3:126.Google Scholar
  28. Rothstein, A., 1978, The functional roles of band 3 protein of the red blood cell, Harvard Book Biophys., 2: 128.Google Scholar
  29. Ship, S., Shami, Y., Breuer, W., and Rothstein, A., 1977, Synthesis of tritiated 4,4’-diisothiocyano-2,2’stilbene disulfonic acid (H2DIDS) and its covalent reaction with sites related to anion transport in red blood cells, J. Membr. Biol., 33: 311.PubMedCrossRefGoogle Scholar
  30. Sigrist, H., and Zahler, P., 1978, Characterization of phenylisothiocyanate as a hydrophobic membrane label, FEBS Lett., 95: 116.PubMedCrossRefGoogle Scholar
  31. Sigrist, H., Kempf, Ch., and Zahler, P., 1980, Interaction of phenylisothiocyanate with human erythrocyte band 3: I. Covalent modification and inhibition of phosphate transport, Biochim. Biophys. Acta, 597: 137.PubMedCrossRefGoogle Scholar
  32. Staros, J. V., and Richards, F. M., 1974, Photochemical labelling of the surface proteins of human erythrocytes, Biochem., 13: 2720.CrossRefGoogle Scholar
  33. Steck, Th. L., Koziarz, J. J., Singh, M. K., Reddy, G., and Koehler, H., Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes, Biochemistry, 17: 1216.CrossRefGoogle Scholar
  34. Williams, D. G., Jenkins, R. E., and Tanner, M. J. A., 1979, Structure of the anion-transport protein of the human erythrocyte membrane. Further studies on the fragments produced by proteolytic digestion, Biochem. J., 181: 477.Google Scholar
  35. Zaki, L., Fasold, H., Schuhman, B., and Passow, H., 1975, Chemical modification of membrane proteins in relation to anion exchange in human red blood cells, J. Cell. Physiol., 86: 471.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Peter Zahler
    • 1
  • Hans Sigrist
    • 1
  1. 1.Institute of BiochemistryUniversity of BerneBerneSwitzerland

Personalised recommendations