Advertisement

Biomembranes pp 111-158 | Cite as

Membrane Fluidity

  • Giorgio Lenaz
Chapter
Part of the NATO ASI Series book series (NSSA, volume 76)

Abstract

The molecular components of biomembranes exist in a highly dynamic state, and an increasing body of evidence indicates the involvement of membrane fluidity in the control of membrane-linked processes.1 The term “fluidity” is imprecise and elusive in its physical meaning; it is used as a bulk thermodynamic property, or at the level of low molecular resolution both as a dynamic property related to the motion of the individual components and as a static feature related to the arrangement or order of the molecules in the membrane. Each of several techniques may detect only one out of these different aspects.

Keywords

Differential Scanning Calorimetry Sarcoplasmic Reticulum Membrane Fluidity Spin Label Lateral Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lenaz, G. Curatola, R. M. Fiorini, and G. Parenti-Castelli, Proc. 13th Int. Cancer Congress, E. Mihich, and E. Mirand, eds, Liss, New York (1983), in press.Google Scholar
  2. 2.
    G. Vanderkooi, Biochim. Biophys. Acta, 344: 307 (1974).Google Scholar
  3. 3.
    G. L. Nicolson, Biochim. Biophys. Acta, 457:57 (1976).Google Scholar
  4. 4.
    S. J. Singer, and G. L. Nicolson, Science, 175:720 (1972).PubMedGoogle Scholar
  5. 5.
    P. J. Quinn, Progr. Biophys. Mol. Biol., 38: 1 (1981).Google Scholar
  6. 6.
    J. F. Danielli, and H.A. Dayson, J. Cell. Comp. Physiol., 5: 495 (1935).Google Scholar
  7. 7.
    P. R. Cullis, and B. De Kruyff, Biochim. Biophys. Acta, 559: 399 (1979).Google Scholar
  8. 8.
    V. Luzzati, in: “Biological Membranes: Physical Fact and Function,” D. Chapman, ed., Academic Press, London (1968), p. 71.Google Scholar
  9. 9.
    A. D. Bangham, Progr. Biophys. Mol. Biol., 18: 29 (1968).Google Scholar
  10. 10.
    G. Lenaz, in: “Membrane Proteins and their Interactions with Lipids,” R.A. Capaldi, ed., Dekker, New York (1977), p. 47.Google Scholar
  11. 11.
    D. Chapman, Lipids, 4: 251 (1969).PubMedGoogle Scholar
  12. 12.
    S. Mabrey-Gaud, in: “Liposomes: from Physical Structure to Therapeutic Applications,” C. G. Knight, ed., Elsevier, Amsterdam (1981), p. 105.Google Scholar
  13. 13.
    D. M. Small, J. Lipid Res., 8: 551 (1967).PubMedGoogle Scholar
  14. 14.
    D. Chapman, R. M. Williams, and B.D. Ladbrooke, Chem. Phys. Lipids, 1: 445 (1967).Google Scholar
  15. 15.
    B. Lundberg, E. Svens, and S. Ekman, Chem. Phys. Lipids, 22: 285 (1978).PubMedGoogle Scholar
  16. 16.
    A. J. Verkleij, P. H. Ververgaert, L. L. M. Van Deenen, and P. F. Elbers, Biochim. Biophys Acta, 288: 326 (1972).PubMedGoogle Scholar
  17. 17.
    E. J. Shimishick, W. Kleeman, W. L. Hubbell, and H. McConnell, J. Supramol. Struct., 1: 285 (1973).Google Scholar
  18. 18.
    D. Marsh, and A. Watts, in: “Liposomes: from Physical Structure to Therapeutic Applications,” C. G. Knight, ed., Elsevier, Amsterdam (1981), p. 139.Google Scholar
  19. 19.
    H. Trauble, and P. Overath, Biochim. Biophys. Acta, 307: 491 (1973).Google Scholar
  20. 20.
    H. Eibl, and A. Blume, Biochim. Biophys. Acta, 533: 476 (1979).Google Scholar
  21. 21.
    H. Hauser, E. G. Finer, and A. Darke, Biochem. Biophys. Res. Commun., 76: 267 (1977).Google Scholar
  22. 22.
    C. Newton, W. Pangborn, S. Nir, and D. Papahadjopoulos, Biochim. Biophys. Acta, 506: 281 (1978).Google Scholar
  23. 23.
    T. Ito, and S. Ohnishi, Biochim. Biophys. Acta, 352: 29 (1974).Google Scholar
  24. 24.
    B. D. Ladbrooke, R. M. Williams, and D. Chapman, Biochim. Biophys. Acta, 150: 333 (1968).Google Scholar
  25. 25.
    S. Mabrey, P. L. Mateo, and J. M. Sturtevant, Biochemisty, 17: 2464 (1978).Google Scholar
  26. 26.
    T. N. Estep, D. B. Mountcastle, R. L. Biltonen, and T. E. Thompson, Biochemistry, 17: 1984 (1978).Google Scholar
  27. 27.
    B. A. Cornell, D. Chapman, and W. E. Peel, Chem. Phys. Lipids, 23: 223 (1979).Google Scholar
  28. 28.
    H. Katsikas, and P. J. Quinn, Eur. J. Biochem., 124: 165 (1982).PubMedGoogle Scholar
  29. 29.
    M. Shinitzky, and Y. Barenholz, Biochim. Biophys. Acta, 515: 367 (1978).Google Scholar
  30. 30.
    M. Shinitzky, and I. Yuli, Chem. Phys. Lipids, in press (1983).Google Scholar
  31. 31.
    G. Lenaz, in: “Methods for Studying Cardiac Membranes,”, N. S. Dhalla, ed., CRC Press, Boca Raton, in press (1983).Google Scholar
  32. 32.
    L. J. Berliner, in: “Spectroscopy in Biochemistry,” vol. 2, J. E. Bell, ed., CRC Press, Boca Raton (1981), chap. 1.Google Scholar
  33. 33.
    B. J. Gaffney, Methods Enzymol., 32B: 161 (1974).PubMedGoogle Scholar
  34. 34.
    L. Berliner, ed., “Spin Labelling. II. Theory and Application,” Academic Press, New York (1976).Google Scholar
  35. 35.
    J. S. Hyde, and L. R. Dalton, in: “Spin Labelling. II. Theory and Application,” L. J. Berliner, ed., Academic Press, New York (1979), chap. 1.Google Scholar
  36. 36.
    P. Meier, A. Blume, E. Ohmes, F. A. Neugebauer, and G. Kothe, Biochemistry, 21: 526 (1982).PubMedGoogle Scholar
  37. 37.
    G. R. Penzer, in: “An Introduction to Spectroscopy for Biochemists,” S. B. Brown, ed., Academic Press, London (1980), chap. 3.Google Scholar
  38. 38.
    G. K. Radda, and J. Vanderkooi, Biochim. Biophys. Acta, 265: 509 (1972).Google Scholar
  39. 39.
    G. S. Beddard, M. A. West, eds, “Fluorescent Probes,” Academic Press, London (1981).Google Scholar
  40. 40.
    L. A. Sklar, B. S. Hudson, and R. D. Simoni, Biochemistry, 16: 819 (1977).PubMedGoogle Scholar
  41. 41.
    M. Traiible, G. Middelhoff, and V. W. Brown, FEBS Lett., 49: 269 (1974).Google Scholar
  42. 42.
    H. J. Galla, and E. Sackmann, Biochim. Biophys. Acta, 339: 103 (1974).Google Scholar
  43. 43.
    D. Chapman, Ann. N. Y. Acad. Sci., 195: 179 (1972).Google Scholar
  44. 44.
    J. Seelig, and A. Seelig, Quart. Rev. Biophys., 13: 19 (1980).Google Scholar
  45. 45.
    J. Seelig, Quart. Rev. Biophys., 10: 353 (1977).Google Scholar
  46. 46.
    G. Lenaz, Subcell. Biochem., 6: 233 (1979).PubMedGoogle Scholar
  47. 47.
    R. A. Capaldi, and G. Vanderkooi, Proc. Natl. Acad. Sci. USA, 69: 930 (1972).Google Scholar
  48. 48.
    M. Fry, and D. E. Green, J. Biol. Chem., 256: 1874 (1981).PubMedGoogle Scholar
  49. 49.
    S. B. Vik, G. Georgevich, and R. A. Capaldi, Proc. Natl. Acad. Sci. USA, 78:1456 (1 981).Google Scholar
  50. 50.
    D. M. Engelman, R. Hendersen, A. McLachlan, and B.A. Wallace, Proc. Natl. Acad. Sci. USA, 77: 2023 (1980).Google Scholar
  51. 51.
    G. Buse, G. J. Steffens, G. C. M. Steffens, R. Sacher, and M. Erdeg, in: “Interactions between Iron and Proteins in Electron Transport,” C. Ho, ed., Elsevier, Amsterdam (1981).Google Scholar
  52. 52.
    D. W. Urry, Biochim. Biophys. Acta, 265: 116 (1972).Google Scholar
  53. 53.
    P. N. Unwin, and R. Hendersen, J. Mol. Biol., 94: 425 (1975).PubMedGoogle Scholar
  54. 54.
    Y. Ovchinnikow, N. Abdulaev, M. Feigira, A. Kiselev, and N. Lobanov, FEBS Lett., 100: 219 (1979).Google Scholar
  55. 55.
    H. G. Khorana, G. E. Gerber, W. C. Herlihy, C. P. Gray, R. J. Anderegg, and K. Nineik-Bremann, Proc. Natl. Acad. Sci. USA, 76: 5045 (1979).Google Scholar
  56. 56.
    D. Papahadjopoulos, M. Moscarello, E. H. Eylar, and T. Isac, Biochim. Biophys. Acta, 401: 317 (1975).Google Scholar
  57. 57.
    P. C. Jost, 0. H. Griffith, R. A. Capaldi, and G. Vanderkooi, Biochim. Biophys. Acta, 311: 141 (1973).Google Scholar
  58. 58.
    P. J. Dehlinge, P. C. Jost, 0. H. Griffith, Proc. Natl. Acad. Sci. USA, 71: 2280 (1974).Google Scholar
  59. 59.
    G. B. Warren, M. D. Houslay, J. C. Metcalfe, and N. J. M. Birsdall, Nature, 255: 684 (1975).PubMedGoogle Scholar
  60. 60.
    S. Marcelja, Biochim. Biophys. Acta, 445: 1 (1976).Google Scholar
  61. 61.
    J. R. Brotherus, P. C. Jost, 0. H. Griffith, J. F. Keana, and L. E. Hokin, Proc. Natl. Acad. Sci. USA, 77: 272 (1980).Google Scholar
  62. 62.
    J. Seelig, L. Tamm, L. Hymel, and S. Fleischer, Biochemistry, 20: 3922 (1981).PubMedGoogle Scholar
  63. 63.
    D. Chapman, J. C. Gomez-Fernandez, and F. M. Goni, FEBS Lett., 98: 211 (1979).PubMedGoogle Scholar
  64. 64.
    W. Stoffel, O. Zierenberg, and H. Scheefers, Hoppe Seyler’s Z. Physiol. Chem., 358: 865 (1977).Google Scholar
  65. 65.
    E. Favre, A. Baroin, A. Bienvenue, and P. Devaux, Biochemistry, 18: 1156 (1979).PubMedGoogle Scholar
  66. 66.
    H. Nakamura, and A. N. Martonosi, J. Biochem., 87: 525 (1980).PubMedGoogle Scholar
  67. 67.
    D. Chapman, B. A. Cornell, and P. J. Quinn, in: “Biochemistry of Membrane Transport,” G. Semenza, and E. Carafoli, eds, Springer, Berlin (1977), p. 72.Google Scholar
  68. 68.
    P. J. Quinn, and D. Chapman, Crit. Rev. Biochem., 8: 1 (1980).Google Scholar
  69. 69.
    J. F. Blazyk, and J. M. Steim, Biochim. Biophys. Acta, 266: 734 (1972).Google Scholar
  70. 70.
    W. Kleemann, and H. M. McConnell, Biochim. Biophys. Acta, 419: 206 (1976).Google Scholar
  71. 71.
    E. Shechter, L. Letellier, and T. Gulik, Eur. J. Biochem., 49: 61 (1974).PubMedGoogle Scholar
  72. 72.
    C. W. M. Haest, A. J. Verkleij, J. De Gier, R. Scheek, P. H. J. Ververgaert, and L. L. M. Van Deenen, Biochim. Biophys. Acta, 356: 17 (1974).Google Scholar
  73. 73.
    R. J. Cherry, U. Müller, C. Holenstein, and M. P. Heyn, Biochim. Biophys. Acta, 596: 145 (1980).Google Scholar
  74. 74.
    T. Mühlebach, and R. J. Cherry, Biochemistry, 21: 4225 (1982).PubMedGoogle Scholar
  75. 75.
    S. W. Hui, C. M. Stewart, M. P. Carpenter, and T. P. Stewart, J. Cell Biol., 85: 283 (1980).PubMedGoogle Scholar
  76. 76.
    S. Rottem, V. P. Cirillo, B. De Kruyff, M. Shinitzky, and S. Razin, Biochim. Biophys. Acta, 323: 509 (1973).Google Scholar
  77. 77.
    M. Shinitzky, in: “Physical Chemical Aspects of Cell Surface Events in Cellular Regulation,” DeLisi and Blumenthal, eds, Elsevier, Amsterdam (1979), p. 173.Google Scholar
  78. 78.
    M. Shinitzky, and M. Inbar, Biochim. Biophys. Acta, 433: 133 (1976).Google Scholar
  79. 79.
    H. Borochov, R. E. Abbott, D. Schachter, and M. Shinitzky, Biochemistry, 18: 251 (1979).PubMedGoogle Scholar
  80. 80.
    R. N.Farias, B. Bloj, R. D. Morero, F. Sineriz, and R. E. Trucco, Biochim. Biophys. Acta, 415: 231 (1975).Google Scholar
  81. 81.
    G. Lenaz, G. Curatola, and G. Parenti-Castelli, in: “Advances in Studies of Heart Metabolism,” C. M. Caldarera, and P. Harris, eds, CLUEB, Bologna (1982), p. 15.Google Scholar
  82. 82.
    A. Spisni, L. Masotti, G. Lenaz, E. Bertoli, F. Pedulli, and C. Zannoni, Arch. Biochem. Biophys., 190: 454 (1978).PubMedGoogle Scholar
  83. 83.
    E. Ferri, R. Fato, T. Fahmy, and G. Lenaz, 2nd EBEC Reports, Lyon (1982), p. 215.Google Scholar
  84. 84.
    K. Folkers and Y. Yamamura, eds, “Biomedical and Clinical Aspects of Coenzyme Q,” vol. III, Elsevier, Amsterdam (1981).Google Scholar
  85. 85.
    B. L. Trumpower, J. Bioenerg. Biomembr., 13: 1 (1981).PubMedGoogle Scholar
  86. 86.
    R. Takayanagi, K. Takeshige, and S. Minakami, Biochem. J., 192: 853 (1980).PubMedGoogle Scholar
  87. 87.
    G. Lenaz, G. Curatola, and L. Masotti, J. Bioenerg., 7: 223 (1975).Google Scholar
  88. 88.
    G. Lenaz, G. Curatola, L. Mazzanti, and G. Parenti-Castelli, Mol. Cell. Biochem., 22: 3 (1978).PubMedGoogle Scholar
  89. 89.
    E. S. Wu, K. Jacobson, and D. Papahadjopoulos, Biochemistry, 16: 3936 (1977).PubMedGoogle Scholar
  90. 90.
    C. J. Scandella, P. Devaux, and H. M. McConnell, Proc. Natl. Acad. Sci. USA, 69: 2056 (1972).Google Scholar
  91. 91.
    B. A. Cornell, and J. M. Pope, Chem. Phys. Lipids, 27: 151 (1980).Google Scholar
  92. 92.
    C. A. Tyson, H. Vande Zande, and D. E. Green, J. Biol. Chem., 251: 1326 (1976).PubMedGoogle Scholar
  93. 93.
    R. D. Kornberg, and H. M. McConnell, Biochemistry, 10: 1111 (1971).PubMedGoogle Scholar
  94. 94.
    J. E. Rothman, and E. A. Dawidowicz, Biochemistry, 14: 2809. (1975).PubMedGoogle Scholar
  95. 95.
    R. D. Frye, and M. Edidin, J. Cell Sci., 7: 319 (1970).PubMedGoogle Scholar
  96. 96.
    M. Edidin, and Fambrough, J. Cell Biol., 57: 27 (1973).Google Scholar
  97. 97.
    R, J. Cherry, Biochim. Biophys. Acta, 559: 289 (1979).Google Scholar
  98. 98.
    R. A. Poo, Nature, 247: 438 (1974).PubMedGoogle Scholar
  99. 99.
    R. Peters, J. Peters, R. Tews, and W. Bahr, Biochim. Biophys. Acta, 367: 282 (1974).Google Scholar
  100. 100.
    J. Schlessinger, W. W. Webb, E. L. Elson, and H. Metzger, Nature, 264: 550 (1976).PubMedGoogle Scholar
  101. 101.
    B. A. Smith, W. L. Clark, and H. M. McConnell, Proc. Natl. Acad. Sci. USA, 76: 5641 (1979).Google Scholar
  102. 102.
    R. J. Cherry, FEBS Lett., 55: 1 (1975).PubMedGoogle Scholar
  103. 103.
    S. De Petris, and M. C. Raff, Nature New Biol., 241: 257 (1973).Google Scholar
  104. 104.
    S. P. Verma, and D. F. H. Wallach, Biochim. Biophys. Acta, 382: 73 (1975).Google Scholar
  105. 105.
    R. A. Cone, Nature New Biol., 236: 39 (1972).PubMedGoogle Scholar
  106. 106.
    R. J. Cherry, Methods Enzymol., 54: 47 (1978).PubMedGoogle Scholar
  107. 107.
    E. A. Nigg, and R. J. Cherry, Biochemistry, 18: 3457 (1979).PubMedGoogle Scholar
  108. 108.
    W. Hoffmann, M. G. Sarzala, and D. Chapman, Proc. Natl. Acad. Sci. USA, 76: 3860 (1979).Google Scholar
  109. 109.
    R. J. Cherry, M. P. Heyn, and D. Oesterhelt, FEBS Lett., 78: 25 (1977).PubMedGoogle Scholar
  110. 110.
    S. Kuwato, C. Lehner, M. Müller, and R. J. Cherry, J. Biol. Chem., 257: 6470 (1982).Google Scholar
  111. 111.
    A. Baroin, D. D. Thomas, and P. F. Devaux, Biochem. Biophys. Res. Commun., 78: 442 (1977).Google Scholar
  112. 112.
    D. D. Thomas, and C. Hidalgo, Proc. Natl. Acad. Sci. USA, 75: 5488 (1978).Google Scholar
  113. 113.
    Y. Kirino, T. Ohkuma, and H. Shimizu, J. Biochem., 84: 111 (1978).PubMedGoogle Scholar
  114. 114.
    D. E. Green, Comp. Biochem. Physiol., 4: 81 (1962).Google Scholar
  115. 115.
    A. Kröger, and M. Klingenberg, Eur. J. Biochem., 34: 358 (1973).PubMedGoogle Scholar
  116. 116.
    A. Kröger, and M. Klingenberg, Eur. J. Biochem., 39: 313 (1973).PubMedGoogle Scholar
  117. 117.
    C. I. Ragan, and C. Heron, Biochem. J., 174: 783 (1978).PubMedGoogle Scholar
  118. 118.
    C. Heron, C. I. Ragan, and B. L. Trumpower, Biochem. J., 174: 791 (1978).PubMedGoogle Scholar
  119. 119.
    H. Schneider, J. J. Lemasters, M. Hochli, and C. R. Hacken-brock, J. Biol. Chem., 255: 3748 (1980).PubMedGoogle Scholar
  120. 120.
    M. Gutman, in: “Coenzyme Q,” G. Lenaz, ed., Wiley, London (1983), in press.Google Scholar
  121. 121.
    J. R. Lakowicz, D. Hogen, and G. Omann, Biochim. Biophys. Acta, 471: 401 (1977).Google Scholar
  122. 122.
    J. R. Lakowicz, in: “Spectroscopy in Biochemistry,” vol. I, J. E. Bell, ed., CRC Press, Boca Raton (1981), chap. 5.Google Scholar
  123. 123.
    P. G. Saffmann, and M. Delbrück, Proc. Natl. Acad. Sci. USA, 72: 3111 (1975).Google Scholar
  124. 124.
    G. S. Levey, Recent Progr. Horm. Res., 29: 361 (1973).Google Scholar
  125. 125.
    M. Rodbell, Nature, 284: 17 (1980).PubMedGoogle Scholar
  126. 126.
    P. Cuatrecasas, Annu. Rev. Biochem., 43: 169 (1974).Google Scholar
  127. 127.
    M. S. Rubin, N. I. Swislocki, and M. Sonenberg, Arch. Biochem. Biophys., 157: 252 (1973).PubMedGoogle Scholar
  128. 128.
    E. M. Massa, R. D. Morero, B. Bloj, and R. N. Farias, Biochem. Biophys. Res. Commun., 66: 115 (1975).Google Scholar
  129. 129.
    F. Hirata, and J. Axelrod, Nature, 275: 219 (1978).PubMedGoogle Scholar
  130. 130.
    F. Hirata, W. J. Strittmatter, and J. Axelrod, Proc. Natl. Acad. Sci. USA, 76: 368 (1979).Google Scholar
  131. 131.
    F. Hirata, and J. Axelrod, Science, 209: 1082 (1980).PubMedGoogle Scholar
  132. 132.
    G. Lenaz, and A. M. Sechi, Ital. J. Biochem., 25: 427 (1976).PubMedGoogle Scholar
  133. 133.
    G. Rimon, E. Hanski, S. Braun, and A. Levitzki, Nature, 276: 394 (1978).PubMedGoogle Scholar
  134. 134.
    B. Fourcans, and K. M. Jain, Adv. Lipid Res., 12: 147 (1974).PubMedGoogle Scholar
  135. 135.
    M. J. Rogers, and P. Strittmatter, J. Biol. Chem., 248:800 (1973).PubMedGoogle Scholar
  136. 136.
    M. J. Rogers, and P. Strittmatter, J. Biol. Chem., 249: 895 (1974).PubMedGoogle Scholar
  137. 137.
    M. J. Rogers, and P. Strittmatter, J. Biol. Chem., 249: 5565 (1974).PubMedGoogle Scholar
  138. 138.
    P. Strittmatter, and M. J. Rogers, Proc. Natl. Acad. Sci. USA, 72: 2658 (1975).Google Scholar
  139. 139.
    M. S. Swanson, A. T. Quintanilha, and D. D. Thomas, J. Biol. Chem., 255: 1494 (1980).Google Scholar
  140. 140.
    W. L. Dean, and C. Tanford, Biochemistry, 17: 1683 (1978).PubMedGoogle Scholar
  141. 141.
    G. Parenti-Castelli, A. M. Sechi, L. Landi, L. Cabrini, S. Mascarello, and G. Lenaz, Biochim. Biophys. Acta, 547: 161 (1979).Google Scholar
  142. 142.
    C. Hegyvary, Biochim. Biophys. Acta, 311: 272 (1973).Google Scholar
  143. 143.
    G. Meissner, and S. Fleischer, Biochim. Biophys. Acta, 255: 19 (1972).Google Scholar
  144. 144.
    G. Lenaz, G. Parenti-Castelli, and A. M. Sechi, Arch. Biochem. Biophys., 167: 72 (1975).PubMedGoogle Scholar
  145. 145.
    M. G. Enoch, A. Català, and P. Strittmatter, J. Biol. Chem., 251: 5095 (1976).PubMedGoogle Scholar
  146. 146.
    J. Kumamoto, J. K. Raison, and J. M. Lyons, J. Theor. Biol., 31: 47 (1971).PubMedGoogle Scholar
  147. 147.
    V. Massey, B. Curti, and H. Ganther, J. Biol. Chem., 241: 2347 (1966).PubMedGoogle Scholar
  148. 148.
    T. Kaizu, Y. Kirino, and H. Shimizu, J. Biochem., 88: 1837 (1980).PubMedGoogle Scholar
  149. 149.
    J. K. Raison, and E. J. McMurchie, Biochim. Biophys. Acta, 363: 135 (1974).Google Scholar
  150. 150.
    G. Lenaz, L. Mazzanti, G. Curatola, and G. Zolese, Arch. Biochem. Biophys. (1983), in press.Google Scholar
  151. 151.
    G. Parenti-Castelli, A. Baracca, R. Fato, and A. Rabbi, Biochem. Biophys. Res. Commun., 111: 366 (1983).Google Scholar
  152. 152.
    L. Masotti, G. Lenaz, A. Spisni, and D. W. Urry, Biochem. Biophys. Res. Commun., 56: 892 (1974).Google Scholar
  153. 153.
    G. Parenti-Castelli, G. Lenaz, and G. Brown, J. Neurochem., submitted.Google Scholar
  154. 154.
    G. Curatola, R. M. Fiorini, G. Parenti-Castelli, A. Baracca, G. Solaini, and G. Lenaz, FEBS Lett., 155: 131 (1983).PubMedGoogle Scholar
  155. 155.
    C. Hidalgo, N. Ikemoto, and J. Gergely, J. Biol. Chem., 250: 4224 (1976).Google Scholar
  156. 156.
    J. A. Bioca, F. Travers, and T. E. Barman, FEBS Lett., 153: 217 (1983).Google Scholar
  157. 157.
    C. R. Hackenbrock, M. Hochli, and R. M. Chan, Biochim. Biophys. Acta, 455: 466 (1976).Google Scholar
  158. 158.
    A. Johansson, C. A. Keíghtley, G. A. Smith, C. D. Richards, T. R. Hesketh, and J. C. Metcalfe, J. Biol. Chem., 256: 1643 (1981).Google Scholar
  159. 159.
    D. G. Davis, G. Inesi, and T. Gulik, Biochemistry, 15: 1271 (1976).PubMedGoogle Scholar
  160. 160.
    H. Sandermann, Biochim. Biophys. Acta, 515: 209 (1978).Google Scholar
  161. 161.
    C. Sandorfy, Anesthesiol., 48: 357 (1978).Google Scholar
  162. 162.
    L. Mazzanti, G. Curatola, G. Zolese, E. Bertoli, and G. Lenaz, J. Bioenerg. Biomembr., 11: 17 (1979).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Giorgio Lenaz
    • 1
  1. 1.Istituto BotanicoUniversità di BolognaBolognaItaly

Personalised recommendations