Advertisement

Biomembranes pp 81-110 | Cite as

“Fluidity” of Membranes — An NMR Approach

  • Ian C. P. Smith
Chapter
Part of the NATO ASI Series book series (NSSA, volume 76)

Abstract

It is common to describe biological membranes in terms of their “fluidity”. This rather loose term needs some definition before we can deal with its determination by NMR. Figure 1 shows some of the conformations available to the acyl (alkyl) chains of membrane lipids. In most of these conformations particular angles are made between the normal to the bilayer and a given carbon-hydrogen bond. An assessment of the conformational preferences for a given position can be made in terms of the average value of the function ((3cos2 θ−1)/2), which is known as the bond order parameter, SCD. After correcting for differences in intrinsic geometry, we have the molecular order parameter, Smol = SCD/SGEO. Smol varies from 0 for no conformational preference, to 1 for an extended all-trans conformation. This is the spatial aspect of “fluidity”. The other aspect concerns the rates of motion of individual positions within the allowed ordered region. Of course many motions are possible, and a unique analysis of the various modes and their rates may be difficult. Nevertheless, one can define an “effective” rate of motion. Thus, we see that there are both spatial and temporal components to “fluidity”; specifying only one of them cannot describe the system adequately.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Quadrupole Splitting Chemical Shift Anisotropy Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.U. Becker, “High Resolution NMR”, Academic Press, New York (1980)Google Scholar
  2. 2.
    R.K. Harris and B.E. Mann, “NMR and the Periodic Table”, Academic Press, New York (1978).Google Scholar
  3. 3.
    I.C.P. Smith and H.C. Jarrell, Acc. Chem. Res. (in press, July, 1983).Google Scholar
  4. 4.
    I.C.P. Smith and I.H. Ekiel, in 31P NMR“, D. Gorenstein, ed., Academic Press, N.Y. (1983, in press).Google Scholar
  5. 5.
    J. Seelig, Biochim. Biophys. Acta 515: 105 (1978).PubMedGoogle Scholar
  6. 6.
    R.G. Griffin, Meth. Enzym. 72: 108 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    I.C.P. Smith, in “Biomembranes”, Vol. 13, L. Manson and M. Kates, eds. (in press, autumn, 1983).Google Scholar
  8. 8.
    A.M. Thayer and S.J. Kohler, Biochemistry 20: 6831 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    R.F. Campbell, E. Meirovitch and J.H. Freed, J. Phys. Chem. 83: 525 (1979).CrossRefGoogle Scholar
  10. 10.
    J.H. Freed, G.V. Bruno and C.F. Polnaszek, J. Phys. Chem. 73: 3385 (1971).CrossRefGoogle Scholar
  11. 11.
    E.E. Burnell, P.R. Cullis and B. de Kruijff, Biochim. Biophys. Acta 603: 63 (1980).CrossRefGoogle Scholar
  12. 12.
    V. Luzzati and F. Husson, J. Cell Biol. 12: 207 (1962).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Rance and R.A. Byrd, J. Magn. Res. 52: 221 (1983).CrossRefGoogle Scholar
  14. 14.
    M. Kates and S.C. Kushwaha, in “Energetics and Structure of Halophilic Microorganisms”, S.R. Caplan and M. Ginzburg, eds., pp. 461–480, Elsevier/North Holland, Amsterdam (1978).Google Scholar
  15. 15.
    H. Degani, D. Bach, A. Danon, H. Garty, M. Eisenbach and S.R. Caplan, in “Energetics and Structure of Halophilic Organisms”, S.R. Caplan and N. Ginzburg, eds., pp. 225–232, Elsevier-North Holland, Amsterdam (1978).Google Scholar
  16. 16.
    M.B. Jackson and J.M. Sturtevant, Biochemistry 17: 911 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    W.Z. Plachy, J.K. Lanyi and M. Kates, Biochemistry 13: 4906 (1974).PubMedCrossRefGoogle Scholar
  18. 18.
    J.S. Chen, P.G. Barton, D. Brown and M. Kates, Biochim. Biophys. Acta 352: 202 (1974).CrossRefGoogle Scholar
  19. 19.
    I. Ekiel, D. Marsh, B.W. Smallbone, M. Kates and I.C.P. Smith, Biochem. Biophys. Res. Commun. 100: 105 (1981).CrossRefGoogle Scholar
  20. 20.
    H.C. Jarrell, R.A. Byrd, R. Deslauriers, I. Ekiel and I.C.P. Smith, Biochim. Biophys. Acta 648: 80 (1981).CrossRefGoogle Scholar
  21. 21.
    R. Deslauriers, I. Ekiel, R.A. Byrd, H.C. Jarrell and I.C.P. Smith, Biochim. Biophys. Acta 720: 329 (1982).CrossRefGoogle Scholar
  22. 22.
    G.A. Morris and R. Freeman, J. Magn. Resn. 29: 433 (1978).CrossRefGoogle Scholar
  23. 23.
    P.R. Cullis and B. de Kruijff, Biochim. Biophys. Acta 513: 31 (1978).CrossRefGoogle Scholar
  24. 24.
    P.R. Cullis, B. de Kruijff, M.J. Hope, R. Nayar, A. Rietveld and A.J. Verkleij, Biochim. Biophys. Acta 600: 625 (1980).CrossRefGoogle Scholar
  25. 25.
    J. Seelig, L. Tamm, L. Hymel and S. Fleischer 20: 3922 (1981).Google Scholar
  26. 26.
    H.W. Spiess, in “NMR Basic Principles and Progress”, P. Diehl, E. Fluck and R. Kosfeld, eds., pp. 55–214, Springer Verlag, Berlin (1978).Google Scholar
  27. 27.
    M. Bloom, J.H. Davis and M.I. Vatic, Can. J. Phys. 58: 1510 (1980).CrossRefGoogle Scholar
  28. 28.
    J.H. Davis, K.R. Jeffrey, M. Bloom, M.I. Valic and T.P. Higgs, Chem. Phys. Lett. 42: 390 (1976).CrossRefGoogle Scholar
  29. 29.
    J.H. Davis, Biochim. Biophys. Acta 737: 117 (1983).Google Scholar
  30. 30.
    H.C. Jarrell, K.W. Butler, R.A. Byrd, R. Deslauriers, I. Ekiel and I.C.P. Smith, Biochim. Biophys. Acta 688: 622 (1982).CrossRefGoogle Scholar
  31. 31.
    G.W. Stockton, K.G. Johnson, K.W. Butler, A.P. Tulloch, Y. Boulanger, I.C.P. Smith, J.H. Davis and M. Bloom, Nature 269: 267 (1977).CrossRefGoogle Scholar
  32. 32.
    M. Rance, K.R. Jeffrey, A.P. Tulloch, K.W. Butler and I.C.P. Smith, Biochim. Biophys. Acta 600: 245 (1980).CrossRefGoogle Scholar
  33. 33.
    M. Rance, Ph.D. Thesis, University of Guelph, Canada (1981).Google Scholar
  34. 34.
    J. Seelig and N. Waespe-Sarcevic, Biochemistry 17: 3310 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    M.F. Brown, J. Magn. Res. 35: 203 (1979).CrossRefGoogle Scholar
  36. 36.
    J.H. Davis, Biophys. J. 27: 339 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Seelig and J. Seelig, Biochemistry 13: 4839 (1974).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Bloom, J.H. Davis and A.L. Mackay, Chem. Phys. Lett. 80: 198 (1981).CrossRefGoogle Scholar
  39. 39.
    H.C. Jarrell, M. Rance and I.C.P. Smith, Chem. Phys. Lipids 32: 57 (1983).CrossRefGoogle Scholar
  40. 40.
    G.W. Stockton, K.G. Johnson, K.W. Butler, C.F. Polnaszek, R. Cyr and I.C.P. Smith, Biochim. Biophys. Acta 401: 535 (1975).CrossRefGoogle Scholar
  41. 41.
    I.C.P. Smith, K.W. Butler, A.P. Tulloch, J.H. Davis and M. Bloom, FEBS Lett. 100: 57 (1979).CrossRefGoogle Scholar
  42. 42.
    T.H. Huang, R.P. Skarjune, R.J. Wittebort, R.G. Griffin and E. Oldfield, J. Amer. Chem. Soc. 102: 7377 (1980).CrossRefGoogle Scholar
  43. 43.
    M. Bloom, J.H. Davis and F.W. Dahlquist, XXth Ampère Congress Proceedings, Tallinn Estonia (1978).Google Scholar
  44. 44.
    H.C. Jarrell, R.A. Byrd and I.C.P. Smith, Biophys. J. 34: 451 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    G.W. Stockton and I.C.P. Smith, Chem. Phys. Lipids 17: 251 (1976).PubMedCrossRefGoogle Scholar
  46. 46.
    J.H. Davis, M. Bloom, K.W. Butler and I.C.P. Smith, Biochim. Biophys. Acta 597: 477 (1980).CrossRefGoogle Scholar
  47. 47.
    R. Jacobs and E. Oldfield, Biochemistry 18: 3280 (1979).PubMedCrossRefGoogle Scholar
  48. 48.
    M.G. Taylor, T. Akiyama and I.C.P. Smith, Chem. Phys. Lipids 29: 327 (1981).CrossRefGoogle Scholar
  49. 49.
    H. Meyer, Arch. f. Exper. Path u. Pharmakol. 42: 109 (1899).CrossRefGoogle Scholar
  50. 50.
    Y. Boulanger, S. Schreier, L.C. Leitch and I.C.P. Smith, Can. J. Biochem. 58: 986 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    Y. Boulanger, S. Schreier and I.C.P. Smith, Biochemistry 20: 6824 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    M. Pass, K.W. Butler, E. Kelusky and I.C.P. Smith (unpublished results).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ian C. P. Smith
    • 1
  1. 1.Division of Biological SciencesNational Research Council of CanadaOttawaCanada

Personalised recommendations