Biomembranes pp 357-403 | Cite as

Evolution of Proteins: From Gene Determinism to Cellular Integration

  • Roger Acher
Part of the NATO ASI Series book series (NSSA, volume 76)


The discovery that eukaryotic genes coding for proteins are usually split into several pieces has ruined the simple and convenient concept “one gene — one protein.” It appears now that most eukaryotic proteins are composite systems, not only from the functional viewpoint because of their specialized domains (Richardson, 1981), but also from the biosynthetic aspect since each protein is the product of several separate coding sequences (exons) within the gene. It is not yet known however whether the relationship “one exon-one domain” will be the new dogma. Because genes are the Dei ex machina of evolution, the destruction of their individuality triggers a revolution in biology, as did the split of the atom in chemistry. The present apparent chaos is due to our ignorance of the regulatory mechanisms involved in the genome working.


Arginine Vasopressin Signal Recognition Particle Semliki Forest Virus Paracoccus Denitrificans Neurohypophysial Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acher, R., 1979, Neurophysins: Molecular and Cellular Aspects, Angewandte Chemie, International Ed., 18: 846.Google Scholar
  2. Acher, R., 1980, Molecular Evolution of Biologically Active Polypeptides, Proc. Roy. Soc. Lond., B 210: 21.Google Scholar
  3. Acher, R., 1981, Evolution of Neuropeptides, Trends in Neurosci., 4: 226.Google Scholar
  4. Acher, R., Chauvet, J., and Chauvet, M.T., 1981, Neurohypophysial Hormones and Neurophysins: Structures, Precursors, and Evolution, in “Medicinal Chemistry Advances,” F.G. de las Heras and S. Vega, Pergamon Press, Oxford and New York, p. 473.Google Scholar
  5. Anderson, D.J., 1983, Acetylcholine Receptor Biosynthesis: From Kinetics to Molecular Mechanism, Trends in Neurosci., 6: 169.Google Scholar
  6. Baltimore, D., 1981, Gene Conversion: Some Implications for Immunoglobulin Genes, Cell, 4: 592.Google Scholar
  7. Blanchetot, A., Wilson, V., Wood, D., and Jeffreys, A.J., 1983, The Seal Myoglobin Gene: An Unusually Long Globin Gene, Nature, 301: 732.Google Scholar
  8. Blobel, G., 1980, Intracellular Protein Topogenesis, Proc. Natl. Acad. Sci., U.S.A., 77: 1496.Google Scholar
  9. Boussios, T., Bertles, J.F., and Clegg, J.B., 1982, Simultaneous Expression of Globin Genes for Embryonic and Adult Hemoglobins during Mammalian Ontogeny, Science, 218: 1225.PubMedCrossRefGoogle Scholar
  10. Brisson, N., and Verna, D.P.S., 1982, Soybean Leghemoglobin Gene Family: Normal, Pseudo, and Truncated Genes, Proc. Natl. Acad. Sci., U.S.A., 79: 4055.Google Scholar
  11. Brownstein, M.J., Russell, J.T., and Gainer, H., 1980, Synthesis, Transport and Release of Posterior Pituitary Hormones, Science, 207: 373.Google Scholar
  12. Chauvet, J., Lenci, M.T., and Acher, R., 1960, L’ocytocine et la Vasopressine du Mouton: Reconstitution d’un Complexe Hormonal Actif, Biochem. Biophys. Acta, 38: 266.Google Scholar
  13. Chauvet, M.T., Chauvet, J., Acher, R., and Robinson, A.G., 1979, Identification of MSEL- and VLDV-neurophysins in Human Pituitary Glands, FEBS Lett., 101: 391.PubMedCrossRefGoogle Scholar
  14. Chauvet, M.T., Colne, T., Hurpet, D., Chauvet, J., and Acher, R., 1983, Marsupial Neurohypophysial Hormones: Identification of Mesotocin, Lysine Vasopressin and Phenypressin in the Quokka Wallaby (Setonix Brachyurus), Gen. Comp. Endocrinol., 51: 309.Google Scholar
  15. Chauvet, M.T., Colne, T., Hurpet, D., Chauvet, J., and Acher, R., 1983, A Multigene Family for the Vasopressin-Like Hormones? Identification of Mesotocin, Lysipressin and Phenypressin in Australian Macropods, Biochem. Biophys. Res. Commun., 116: 258.Google Scholar
  16. Chauvet, M.T., Hurpet, D., Chauvet, J., and Acher, R., 1983, Identification of Human Neurophysins: Complete Amino Acid Sequences of MSEL- and VLDV-neurophysins, Proc. Natl. Acad. Sci., U.S.A., 80: 2839.Google Scholar
  17. Chung, D.W., Que, B.G., Rixon, M.W., Mace Jr., M., and Davie, E.W., 1983, Characterization of Complementary Deoxyribonucleic Acid and Genomic Deoxyribonucleic Acid for the ß-chain of Human Fibrinogen, Biochemistry, 22: 3244.PubMedCrossRefGoogle Scholar
  18. Clarke, M., and Spudich, J.A., 1977, Nonmuscle Contractile Proteins: The Role of Actin and Myosin in Cell Motility and Shape Determination, Ann. Rev. Biochem., 46: 797.Google Scholar
  19. Comb, M., Seeburg, P.H., Ademan, J., Eiden, L., and Herbert, E., 1982, Primary Structure of the Human Met-and Leu-enkephalin Precursor and its mRNA, Nature, 295: 663.PubMedCrossRefGoogle Scholar
  20. Craick, C.S., Buchman, S.R., and Beychok, S., 1980, Characterization of Globin Domains: Heme Binding to the Central Exon Product, Proc. Natl. Acad. Sci., U.S.A., 77: 1384.Google Scholar
  21. Craig, S.W., and Pollard, T.D., 1982, Actin-Binding Proteins, Trends in Neurosc i., 7: 88.Google Scholar
  22. Denoulet, P., Edde, B., Jeantet, C., and Gros, F., 1982, Evolution of Tubulin Heterogeneity during Mouse Brain Development, Biochimie, 64: 165.PubMedCrossRefGoogle Scholar
  23. DePierre, J.W., and Ernster, L., 1977, Enzyme Topology of Intracellular Membranes, Ann. Rev. Biochem., 46: 201.Google Scholar
  24. Dockray, G.J., and Gregory, R.A., 1980, Relations between Neuropep- tides and Gut Hormones, Proc. R. Soc. Lond B., 210: 151.Google Scholar
  25. Doolittle, R.F., 1980, The Evolution of Vertebrate Fibrinogen, in “Protides of Biological Fluids,” H. Peeters, ed., Pergamon Press, Oxford, Vol. 28, p. 41.Google Scholar
  26. Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B.O., Tapia, 0., Bränden, C-I., and Åkeson, Å., 1976, Three-dimensional Structure of Horse Liver Alcohol Dehydrogenase at 2.4. Å resolution, J. Mol. Biol., 102: 27.Google Scholar
  27. Erspamer, V., 1981, The Tachykinin Peptide Family, Trends in Neurosci., 4: 267.Google Scholar
  28. Friezner Degen, S.J., MacGillivray, R.T.A., and Davie, E.W., 1983, Characterization of the Complementary Deoxyribonucleic Acid and Gene Coding for Human Prothrombin, Biochemistry, 22: 2087.CrossRefGoogle Scholar
  29. Furutani, Y., Morimoto, Y., Shibahara, S., Noda, M., Takahashi, H., Hirose, T., Asai, M., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1983, Cloning and Sequence Analysis of cDNA for Ovine Corticotropin-Releasing Factor Precursor, Nature, 301: 537.PubMedCrossRefGoogle Scholar
  30. Garoff, H., 1981, The Spike Glycoprotein of Semliki Forest Virus - A Model for Plasma Membrane Proteins, in “International Cell Biology,” H.G. Schweiger, ed., Springer Verlag, Berlin, p. 572.Google Scholar
  31. Garoff, H., Frishauf, A.M., Simons, K., Lehrach, H., and Delius, H.Google Scholar
  32. Giraudat, J., Devillers-Thiery, A., Auffray, C., Rougeon, F., and Changeux, J.P., 1982, Identification of a cDNA Clone Coding for the Acetylcholine Binding Subunit of Torpedo marmorata Acetylcholine Receptor, The EMBO J., 1: 713.Google Scholar
  33. Gubler, U., Seeburg, P., Hoffman, B.J., Gage, L.P., and Udenfriend, S., 1982, Molecular Cloning Establishes Proenkephalin as Precursor of Enkephalin-Containing Peptides, Nature, 295: 206.PubMedCrossRefGoogle Scholar
  34. Guillemin, R., Brazeau, P., Böhlen, P., Ling, N., and Wehrenberg, W.B., 1982, Growth Hormone-Releasing Factor from a Human Pancreatic Tumor that caused Acromegaly, Science, 218: 585.PubMedCrossRefGoogle Scholar
  35. Hartley, B.S., 1979, Evolution of Enzyme Structure, Proc. R. Soc. Lond., B 205: 443.Google Scholar
  36. Henschen, A., Lottspeich, F., Töpfer-Petersen, E., Kehl, M., and Timpl, R., 1972, Fibrinogen Evolution: Intra-and Inter-species Comparisons, in “Protides of Biological Fluids,” H. Peeters, ed., Pergamon Press, Oxford, Vol. 28, p. 47.Google Scholar
  37. Hill, T.L., and Kirschner, M.W., 1982, Bioenergetics and Kinetics of Microtubule and Actin Filament Assembly-Diassembly, Internat. Rev. Cytol., 78: 1.Google Scholar
  38. Hsu, I-Nan, Delbaere, L.T.J., James, M.N.G., and Hoffmann, T., 1977, Penicillopepsin from Penicillium Janthinellum Crystal Structure at 2.8 A and Sequence Homology with Porcine Pepsin, Nature, 266: 140.PubMedCrossRefGoogle Scholar
  39. Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A., and Morris, H.R., 1975, Identification of two Related Pentapeptides from the Brain with Potent Opiate Agonist Activity, Nature, 258: 577.PubMedCrossRefGoogle Scholar
  40. INSERM, Colloque, 1972, “Phylogenetic and Ontogenetic Study of the Immune Response and Its Contribution to the Immunological Theory,” Paris.Google Scholar
  41. Jeffreys, A.J., 1981, Recent Studies of Gene Evolution Using Recombinant DNA, in “Genetic Engineering,” R. Wilkanson, ed., Acad. Press, Vol. 2, p. 1.Google Scholar
  42. John, P., and Whatley, F.R., 1975, Paracoccus Denitrificans and the Evolutionary Origin of Mitochondrion, Nature, 254: 495.Google Scholar
  43. Jörnvall, H., 1970, Horse Liver Alcohol Dehydrogenase, On the Primary Structures of the Isoenzymes, Eur. J. Biochem., 16: 41.Google Scholar
  44. Jung, A., Sippel, A.E., Grez, M., and Schütz, G., 1980, Exons Encode Functional and Structural Units of Chicken Lysozyme, Proc. Natl. Acad. Sci., U.S.A., 77: 5759.Google Scholar
  45. Kalfayan, L., and Wensik, P.C., 1982, Developmental Regulation of Drosophila a-tubulin Genes, Cell, 29: 91.PubMedCrossRefGoogle Scholar
  46. Kant, J.A., and Crabtree, G.R., 1983, The Rat Fibrinogen Genes. Linkage of the Aa and y Chain Genes, J. Biol. Chem., 258: 4666.Google Scholar
  47. Kreil, J., 1981, Transfer of Proteins Across Membranes, Ann. Rev. Biochem., 50: 317.Google Scholar
  48. Land, H., Schütz, G., Schmale, H., and Richter, D., 1982, Nucleotide Sequence of Cloned DNA Encoding for Bovine Argiiiine VasopressinNeurophysin II Precursor, Nature, 295: 299.PubMedCrossRefGoogle Scholar
  49. Land, H., Grez, M., Ruppert, S., Schmale, H., Rehbein, M., Richter, D., and Schütz, G., 1983, Deduced Amino Acid Sequence from the Bovine Oxytocin-Neurophysin I Precursor cDNA, Nature, 302: 342.PubMedCrossRefGoogle Scholar
  50. Lipmann, F., 1976, Reflections on the Evolutionary Transitions from Prokaryotes to Eukaryotes, in “Reflections on Biochemistry,” A. Kornberg, ed., Permagon Press, Oxford, p. 33.Google Scholar
  51. Mains, R.E., Eipper, B.A., Glembotski, C.C., and Dores, R.M., 1983, Strategies for the Biosynthesis of Bioactive Peptides, Trends in Neurosc., 6: 229.Google Scholar
  52. Minty, A.J., Alonso, S., Caravatti, M., and Buckingham, M.E., 1982, A Fetal Skeletal Muscle Actin mRNA in the Mouse and Its Identity with Cardiac Actin mRNA Cell, 30: 185.Google Scholar
  53. Minty, A.J., Alonso, S., Guénet, J.L., and Buckingham, M.E., 1983, Number and Organization of Actin-Related Sequences in the Mouse Genome, J. Mol. Biol., 167: 77.Google Scholar
  54. Nagata, S., Mantei, N, and Weissmann, C., 1980, The Structure of One of the Eight or more Distinct Chromosomal Genes for Human Interferon-a, Nature, 298: 401.Google Scholar
  55. Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A.C.Y., Cohen, S.N., and Numa, S., 1979, Nucleotide Sequence of Cloned cDNA for Bovine Corticotropin-6-Lipotropin Precursor, Nature, 278: 423.PubMedCrossRefGoogle Scholar
  56. Neurath, H., Walsh, K.A., and Winter, W.P., 1967, Evolution of Structure and Function of Proteases, Science, 158: 1638.PubMedCrossRefGoogle Scholar
  57. Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S., and Numa, S., 1982, Isolation and Structural Organization of the Human Preproenkephalin Gene, Nature, 297: 431.PubMedCrossRefGoogle Scholar
  58. Noda, M. Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983, Structural Homology of Torpedo caZifornica Acetylcholine Receptor Subunits, Nature, 302: 528.Google Scholar
  59. Noyes, B.E., Mevarech, M., Stein, R., and Argawal, K.L., 1979, Detection and Partial Sequence Analysis of Gastrin mRNA by using a Oligodeoxynucleotide Probe, Proc. Natl. Acad. Sci., U.S.A., 76: 1170.Google Scholar
  60. Numa, S., 1982, Multi-Hormone Precursors and their Genes, 12th International Congress of Biochemistry, Perth, Western Australia, Abstracts PLE 002–1, p. 7.Google Scholar
  61. Osborne, N.N., Cuello, A.C., and Dockray, G.J., 1982, Substance P and Cholecystokinin-like Peptides in Helix Neurons and Cholecystokinin and Serotonin in a Giant Neuron, Science, 216: 409.PubMedCrossRefGoogle Scholar
  62. Palade, G., 1975, Intracellular Aspects of the Process of Protein Secretion, Science, 189: 347.PubMedCrossRefGoogle Scholar
  63. Perutz, M.F., Muirhead, H., Cox, J.M., and Goaman, L.G.C., 1968, Three Dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution. The Atomic Model, Nature, 219: 131.Google Scholar
  64. Perutz, M.F., 1976, Structure and Mechanism of Haemoglobin, British Med. Bull., 32: 195.Google Scholar
  65. Perutz, M.F., and Lehmann, H., 1968, Molecular Pathology of Human Haemoglobin, Nature, 219: 902.PubMedCrossRefGoogle Scholar
  66. Perutz, M.F., 1970, Stereochemistry of Cooperative Effects in Haemoglobin, Nature, 228: 726.PubMedCrossRefGoogle Scholar
  67. Putnam, F.W., 1972, Structure, Function and Evolution of Human Immunoglobins, in “Protides of Biological Fluids,” H. Peeters, ed., Pergamon Press, Oxfor, Vol. 28, p. 23.Google Scholar
  68. Remy, C., 1984, Immunochemical Relationships between Vertebrate and Invertebrate Neuropeptides, in “Evolution of the Hormonal Systems,” M. Gersh and P. Karlson, Leopoldina Symposium, in press.Google Scholar
  69. Ried, K.B.M., and Porter, R.R., 1981, The Proteolytic Activation Systems of Complement, Ann. Rev. Biochem., 50: 433.Google Scholar
  70. Rossmann, M.G., and Argos, P., 1981, Protein Folding, Ann. Rev. Biochem., 50: 497.Google Scholar
  71. Rossmann, M.G., Moras, D., and Olsen, K.W., 1974, Chemical and Biological Evolution of a Nucleotide-binding Protein, Nature, 250: 194.PubMedCrossRefGoogle Scholar
  72. Sabatini, D.D., Kreibich, G., Morimoto, T., and Adesnik, M., 1982, Mechanisms for the Incorporation of Proteins in Membranes and Organelles, J. Cell. Biol., 92: 1.Google Scholar
  73. Sakano, H., Huppi, K., Heinrich, G., and Tonewaga, S., 1979. Sequences at the Somatic Recombination Sites of Immunoglobulin Light-Chain Genes, Nature, 280–288.Google Scholar
  74. Salemme, F.R., 1977, Structure and Function of Cytochromes c, Ann. Rev. Biochem., 46: 299.Google Scholar
  75. Schneck, A.G., and Vandecasserie, C., 1977, “Myoglobin,” Ed. de l’Université de Bruxelles.Google Scholar
  76. Scott, J., Urdea, M., Quiroga, M., Sanchez-Pescador, R., Fong, N., Selby, M., Rutter, W.J., and Bell, G.I., 1983, Structure of a Mouse Submaxillary Messenger, RNA Encoding Epidermal Growth Factor and Seven Related Proteins, Science, 221: 236.Google Scholar
  77. Snyder, J.A., and McIntosh, J.R., 1976, Biochemistry and Physiology of Microtubules, Ann. Rev. Biochem., 45: 699.Google Scholar
  78. Spiess, J., Rivier, J., Rivier, C., and Vale, W., 1981, Primary Structure of Corticotropin-Releasing Factor from Ovine Hypothalamus, Proc. Natl. Acad. Sci., U.S.A., 78: 6517.Google Scholar
  79. Spiess, J., Rivier, J., and Vale, W., 1983, Characterization of Rat Hypothalamic Growth Hormone-Releasing Factor, Nature, 303: 532.PubMedCrossRefGoogle Scholar
  80. Takahashi, H., Teranishi, Y., Nakanishi, S., and Numa, S., 1981, Isolation and Structural Organization of the Human Corticotropin-ß-Lipotropin Precursor Gene, FEBS Lett., 135: 97.PubMedCrossRefGoogle Scholar
  81. Tang, J., 1979, Evolution in the Structure and Function of Carboxyl Proteases, Molec. Cell. Biochem., 26: 93.Google Scholar
  82. Tang, J., James, M.N.G., Hsu, I.N., Jenkins, J.A., and Blundell, T.L., 1978, Structural Evidence for Gene Duplication in the Evolution of the Acid Proteases, Nature, 271: 618.PubMedCrossRefGoogle Scholar
  83. Thoenes, G.H., 1972, The Hagfish at the Phylogenetical Juncture towards Immunological Response, in Colloque INSERM, “Phylogenetic and Ontogenetic Study of the Immune Response and its Contribution to the Immunological Theory,” Paris, p. 69.Google Scholar
  84. Timasheff, S.N., 1981, The Biological Approach to Self-Assembly of Biological Organelles: The Tubulin - Microtubule System, in “Molecular Approaches to Gene Expression and Protein Structure,” Acad. Press, Inc., p. 245.Google Scholar
  85. Timkovich, R., Dickerson, R.E., and Margoliash, E., 1976, Amino Acid Sequence of Paracoccus Denitrificans Cytochrome c550, J. Biol. Chem., 251: 2197.Google Scholar
  86. Vainshtein, B.K., Harutyunyan, E.H., Kuranova, I.P., Borisov, V.V., Sosfenov, N.I., Pavlosky, A.G., Grebenko, A.I., and Konareva, N.V.. 1975, Structure of Leghaemoglobin from Lupin Root Nodules at 5 A Resolution, Nature, 254: 163.PubMedCrossRefGoogle Scholar
  87. Valenzuela, P., Quiroga, M., Zaldivar, J., Rutter, W.J., Kirschner, M.W., and Cleveland, D.W., 1981, Nucleotide and Corresponding Amino Acid Sequences Encoded by α and β Tubulin mRNAs, Nature, 289: 650.PubMedCrossRefGoogle Scholar
  88. Vandekerhove, J., and Weber, K., 1978, Mammalian Cytoplasmic Actins are the Products of at Least two Genes and Differ in Primary Structure in at least 25 Identified Positions from Skeletal Muscle Actins, Proc. Natl. Acad. Sci., U.S.A., 75: 1106.Google Scholar
  89. Vizsolyi, E., and Perks, A.M., 1969, New Neurohypophysial Principles in Foetal Mammals, Nature, 223: 1169.PubMedCrossRefGoogle Scholar
  90. Walter, P., Gilmore, R., Müller, M., and Blobel, G., 1982, The Protein Translocation Machinery of the Endoplasmic Reticulum, Phil. Trans. R. Soc. Lond., B 300: 225.Google Scholar
  91. Wickner, W., 1979, The Assembly of Proteins into Biological Membranes: The Membrane Trigger Hypothesis., Ann Rev. Biochem., 48: 23.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Roger Acher
    • 1
  1. 1.Laboratory of Biological ScienceUniversity of Paris IVParisFrance

Personalised recommendations