Biomembranes pp 343-356 | Cite as

Reconstitution of Nerve Membrane Sodium Channels

  • Raimundo Villegas
  • Gloria M. Villegas
Part of the NATO ASI Series book series (NSSA, volume 76)


The structure of the neuronal plasma membrane responsible of the Na conductance change associated with excitation and conduction is known as Na channel. The Na channel mechanism can be activated by changes in the electric field or by the action of some chemical agents; it preferentially allows Na to cross the membrane following its electrochemical potential gradient, and it can be specifically blocked by tetrodotoxin or saxitoxin. For reviews see (1–3).


Sodium Channel Membrane Particle Nerve Membrane Neuronal Plasma Membrane Octyl Glucoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, C.M., 1981, Sodium channels and gating currents, Physiol. Rev. 61: 644.PubMedGoogle Scholar
  2. 2.
    Catterall, W.A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Ann. Rev. Pharmacol. Toxicol. 20: 15.CrossRefGoogle Scholar
  3. 3.
    Villegas, R., and Villegas, G.M., 1981, Nerve sodium channel incorporation in vesicles, Ann Rev. Biophys. Bioeng. 10: 387.CrossRefGoogle Scholar
  4. 4.
    Narahashi, T., 1974, Chemicals as tools in the study of excitable membranes, Physiol. Rev. 54: 813.PubMedCrossRefGoogle Scholar
  5. 5.
    Hille, B., 1975, Ion selectivity, saturation, and block in sodium channels. A four barrier model, J. Gen. Physiol. 66: 535.PubMedCrossRefGoogle Scholar
  6. 6.
    Mullins, L.J., 1975, Ion selectivity of carriers and channels, Biophys. J. 15: 921.PubMedCrossRefGoogle Scholar
  7. 7.
    Barnola, F.V., and Villegas, R., 1976, Sodium flux through the sodium channels of axon membrane fragments isolated from lobster nerve, J. Gen. Physiol. 67: 81.PubMedCrossRefGoogle Scholar
  8. 8.
    Correa, A.M., Villegas, G.M. and Villegas, R., 1983, Nerve sodium channel in membrane vesicles and in reconstituted proteoliposomes: Effect of anemone toxin II. Biophys. J. 41: 143a.Google Scholar
  9. 9.
    Villegas, R., Villegas, G.M., Barnola, F.V., and Racker, E., 1977, Incorporation of the sodium channel of lobster nerve into artificial liposomes, Biochrm. Biophys. Res. Comm. 79: 210.Google Scholar
  10. 10.
    Villegas, R., Villegas, G.M., Condrescu-Guidi, M., and Suarez-Mata, Z., 1980, Characterization of the nerve membrane sodium channel incorporated into soybean liposomes: a sodium channel active particle, Ann. N.Y. Acad. Sci. 358: 183.Google Scholar
  11. 11.
    Villegas, R., Villegas, G.M., and Suarez-Mata, Z., 1981, Reconstitution of the sodium channel with partially solubilized lobster nerve membrane, J. Physiol., Paris. 77: 1077.Google Scholar
  12. 12.
    Villegas, R., Villegas, G.M., Suarez-Mata, Z., and Rodriguez F., Reconstitution of nerve membrane sodium channel, in “Structure & Function in Excitable Cells”. D.C. Chang, I. Tasaki, W.J. Adelman and H.R. Leuchtag, eds., Plenum Pub., New York. In the press.Google Scholar
  13. 13.
    Kasahara, M. and Hinkle, P.C., 1976, Reconstitution of Dglucosa transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes, Proc. Natl. Acad. Sci. USA. 73: 396.Google Scholar
  14. 14.
    Gasko, 0.D., Knowles, A.F., Shertzer, H.G., Soulinna, E.M., and Racker, E., 1976, The use of ion exchange resins for studying ion transport in biological systems, Anal. Biochem. 72: 57.Google Scholar
  15. 15.
    Villegas, R., Villegas, G.M., Barnola, F.V., and Racker, E., Studies on the incorporation of the sodium channel of lobster nerve into soybean liposomes, in: “Neurotoxins: Tools in Neurobiology”. B. Cecarelli and F. Clementi, eds., Raven Press, New York (1979).Google Scholar
  16. 16.
    Villegas, R., Barnola, F.V., Sevcik, C., and Villegas, G.M., 1976, Action of the sterol-binding form of filipin on the lobster axon membrane, Biochim. Biophys. Acta 426: 81Google Scholar
  17. 17.
    Balerna, M., Fosset, M., Chicheportiche, R., Romey, G., and Lazdunski, M., 1975, Constitution and Properties of Axonal Membranes of Crustacean Nerves. Biochemistry 14: 5500.PubMedCrossRefGoogle Scholar
  18. 18.
    Benzer, T.I., and Raftery, M.A., 1972, Partial characterization of a tetrodotoxin-binding component from nerve membrane. Proc. Natl. Acad. Sci. USA. 69: 3634.Google Scholar
  19. 19.
    Chandler, W.K., and Meves, H., 1965, Voltage clamp experiments on internally perfused giant axons. J. Physicl. ( London ). 180: 788.Google Scholar
  20. 20.
    Colquhoun, D., Henderson, R., and Ritchie, J.M., 1972, The binding of labeled tetrodotoxin to nonmyelinated nerve fibers, J. Physiol. ( London ). 227: 95.Google Scholar
  21. 21.
    Ritchie, J.M., Rogart, R., and Strichartz, G.R., 1976, A new method for labelling saxitoxin and its binding to nonmyelinated fiber of the rabbit vagus, lobster walking leg and garfish olfactory nerves, J. Physiol (London) 261: 477.Google Scholar
  22. 22.
    Catterall, W.A., Neurotoxins as allosteric modifiers of voltage-sensitive sodium channels, in: “Neurotoxins: Tools in Neurobiology”. B. Cecarelli and F. Clementi, eds., Raven Press, New York (1979).Google Scholar
  23. 23.
    Condrescu, M., and Villegas, R., 1982, Ionic selectivity of the nerve membrane sodium channel incorporated into liposomes, Biochim. Biophys. Acta. 688: 660.Google Scholar
  24. 24.
    Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 56: 637.Google Scholar
  25. 25.
    Khodorov, B.I., Chemicals as tools to study nerve fiber sodium channels, in: “Membrane Transport Processes” D.C. Tosteson, Yu. A. Ovchinnikov and R. LaTorre, eds., vol 2, Raven Press, New York (1978).Google Scholar
  26. 26.
    Mozhayeva, G.N., Naumov, A.P., Negulyaev, Y.A., and Nosyreva, E.D., 1977, The permeability of aconitine-modified sodium channels to univalent cations in myelinated nerves. Biochim. Biophys. Acta 466: 461.PubMedCrossRefGoogle Scholar
  27. 27.
    Levinson, S.R., and Ellory, J.C., 1973, Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation, Nature 245: 122.CrossRefGoogle Scholar
  28. 28.
    Agnew, W.S., Moore, A.C., Levinson, S.R., and Raftery, M.A. 1980, Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus. Biochim. Biophys. Res.Comm. 92: 860.CrossRefGoogle Scholar
  29. 29.
    Lazdunski, M., Balerna, M., Chicheportiche, R., Rosset, M., Jacques, Y., Lombet, A., Romey, G., and Schweitz, H., Interactions of the neurotoxins with the selectivity filter and the gating system of the sodium channel, in: “Neurotoxins: Tools in Neurobiology” B. Cecarelli and F. Clementi, eds., Raven Press, New York (1979).Google Scholar
  30. 30.
    Hartshorne, R.P., and Catterall, W.A., 1981, Purification of the saxitoxin receptor of the sodium channel from rat brain, Proc. Natl. Acad. Sci. USA. 78: 4620.PubMedCrossRefGoogle Scholar
  31. 31.
    Beneski, D.A., and Catterall, W.A., 1980. Covalent labeling of the protein components of the Na+ channel with photoactivable derivative of scorpion toxin, Proc. Natl. Acad. Sci. USA. 77: 639.PubMedCrossRefGoogle Scholar
  32. 32.
    Villegas, R. and Villegas, G.M., 1983, Solubilización del receptor de saxitoxina de la membrana plasmâtica de nervios de langosta. Acta Cientif.Venez. 34 (Sup.1): 15.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Raimundo Villegas
    • 1
  • Gloria M. Villegas
    • 1
  1. 1.Instituto Internacional de Estudios Avanzados (IDEA)CaracasVenezuela

Personalised recommendations