Biomembranes pp 317-342 | Cite as

Identification of Calcium Channels with Radiolabelled Calcium Blockers

  • C. A. M. Carvalho
  • A. P. Carvalho
Part of the NATO ASI Series book series (NSSA, volume 76)


The plasma membrane of a nerve cell separates the extracellular mM Ca2+ concentration, [Ca2+]o,from the intracellular μM Ca2+ concentration, [Ca2+]i. When activation of the neuron takes place an action potential flows along the axon towards the nerve ending, and depolarization of its membrane causes the entry of Ca2+, which triggers the fusion of synaptic vesicles with the plasma membrane and the subsequent release of neurotransmitters (Fig. 1).


Calcium Antagonist Brain Membrane Hill Plot Calcium Entry Blocker Synaptic Plasma Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Katz and R. Miledi, Spontaneous and evoked activity of motor nerve endings in calcium Ringer, J. Physiol (Lond.) 203: 689 (1969).Google Scholar
  2. 2.
    B. Katz and R. Miledi, Further study of the role of calcium in synaptic transmission, J. Physiol. (Lond.) 207: 789 (1970).Google Scholar
  3. 3.
    R. J. DeLorenzo, The calmodulin hypothesis of neurotransmission, Cell Calcium 2: 365 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    A. L. Hodgkin and A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the axon of Loligo, J. Physiol. (Lond.) 116: 472 (1952).Google Scholar
  5. 5.
    A. L. Hodgkin and R. D. Keynes, Movements of labelled calcium in squid giant axons, J. Physiol. (Lond.) 138: 253 (1957).Google Scholar
  6. 6.
    P. F. Baker, A. L. Hodgkin and F. B. Ridgway, Depolarization and calcium entry in squid giant axons, J. Physiol. (Lond) 218: 709 (1971).Google Scholar
  7. 7.
    P. F. Baker and H. G. Glitsch, Voltage-dependent changes in the permeability of the nerve membranes to calcium and other divalent cations, Philos. Trans. R. Soc. Lond. B. 270: 389 (1975).CrossRefGoogle Scholar
  8. 8.
    R. R. Llinas, J. R. Blinks and C. Nicholson, Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin, Science 176: 1127 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    R. R. Llinas, I. S. Steinberg and A. K. Walton, Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Natl. Acad. Sci. USA. 73: 2918 (1972).CrossRefGoogle Scholar
  10. 10.
    R. R. Llinas, Calcium in synaptic transmission, Scientific. Amer. 247: 38 (1982).Google Scholar
  11. 11.
    S. Hagiwara and L. Byerly, Calcium channel, Ann Rev Neurosci. 4: 69 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    J. E. Heuser, T. S. Reese, M. J. Dennis, Y. Jan and L. Evan, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81: 275 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    J. E. Heuser and T. S. Reese, Structural changes after transmitter release at frog neuromuscular junction, J. Cell Biol. 83: 564 (1979).Google Scholar
  14. 14.
    W. A. Catteral, The emerging molecular view of the sodium channel, Trends Neurosci. 5: 303 (1982).CrossRefGoogle Scholar
  15. 15.
    W. A. Catteral, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Ann. Rev. Pharmacol. Toxicol. 20: 15 (1980).CrossRefGoogle Scholar
  16. 16.
    A. Buonanno and R. Villegas, Sodium channel activity in brain membrane fractions isolated from rats of different ages, Biochim. Biophys. Acta 730: 161 (1983).CrossRefGoogle Scholar
  17. 17.
    A. Fleckenstein, H. Tritthart, B. Fleckenstein, A. Herbst and G. Grün, A new group of competitive Ca-antagonists (Isoveratil, D-600, Prenylamine) with highly potent effects on excitation-contraction coupling in mammalian miocardium. Pflügers Arch. Gesamte Physiol. Menschen Tiere 307, R 25, (1969).Google Scholar
  18. 18.
    A. Fleckenstein, Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle, Ann. Rev. Pharmacol. Toxicol. 17: 149 (1977).CrossRefGoogle Scholar
  19. 19.
    D. A. Nachsen and M. P. Baustein, The effects of some organic “calcium antagonists” on calcium influx in presynaptic nerve terminals, Mol. Pharmacol. 16: 579 (1979).Google Scholar
  20. 20.
    H. L. Cardenas, S. M. Shreeve and D. H. Ross, Clonidine antagonizes Ca2+ channels in rat brain synaptosomes, Fed. Proc. 42: 842 (1983).Google Scholar
  21. 21.
    D. J. Triggle, Biochemical pharmacology of calcium blockers, in: “Calcium Blockers. Mechanisms of Action and Clinical Aplications”, S. F. Flain and R. Zelis, eds., Urban & Schwarzenberg, Baltimore (1982).Google Scholar
  22. 22.
    C. O. Brostrom and D. J. Wolf, Properties and functions of calmodulin, Biochem. Pharmacol. 30: 1395 (1981).Google Scholar
  23. 23.
    H. Glossmann, D. R. Ferry, F. LUbbecke, R. Mewes and F. Hofmann, Calcium channels: direct identification with radioligand binding studies, Trends Pharmacol. Sci. 3: 431 (1982).Google Scholar
  24. 24.
    P. Bellemann, D. R. Ferry, F. Lübbecke and H. Glossmann, [3H]-nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes, Arzneim.-Forsch./Drug Res. 31 (II): 2064 (1981).Google Scholar
  25. 25.
    P. Bellemann, D. R. Ferry, F. Lübbecke and H. Glossmann, [3H]-nimodipine and [3H]-nitrendipine as tools to directly identify the sites of action of 1,4-dihytropyridine calcium antagonists in guinea-pig tissues, Arzneim.-Forsch./Drug Res. 32: 361 (1982).Google Scholar
  26. 26.
    H. Glossmann, D. R. Ferry, F. LUbbecke, R. Mewes and F. Hoffman, Identification of voltage-operated calcium channels by binding studies: differentiation of subclasses of calcium antagonist drugs with 3H-nimodipine radioligan binding, J. Rec. Res. 3: 177 (1983).Google Scholar
  27. 27.
    R. Towart, E. Wehinger and H. Meyer, Effects of unsymmetrical ester substituted 1,4-dihydropyridine derivatives and their optical isomers on contraction of smooth muscle, Naunyn-Schmiedeberg’s Arch. Pharmacol. 317: 183 (1981).Google Scholar
  28. 28.
    R. Towart, The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium antagonistic dihydropyridines, Circ. Res. 48: 650 (1981).Google Scholar
  29. 29.
    R. J. Gould, K. M. M. Murphy and S. H. Snyder, [3H]-nitrendipine labelled calcium channels discriminate inorganic calcium agonists and antagonists, Proc. Natl. Acad. Sci. USA 79: 3656 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    F. J. Ehlert, W. R. Roeske, E. Itoga and H. I. Yamamura, The binding of [3H]-nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex and ileum of rats, Life Sci. 30: 2191 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    P. J. Marangos, J. Patel, C. Miller and A. M. Martino, Specific calcium antagonist binding sites in brain, Life Sci. 31: 1575 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    H. I. Yamamura, H. Schoemaker R. G. Boles and W. R. Roeske, Diltiazem enhancement of [3H]-nitrendipine binding to calcium channel associated drug receptor sites in rat brain synaptosomes, Biochem. Biophys. Res. Commun. 108: 640 (1982).CrossRefGoogle Scholar
  33. 33.
    G. T. Bolger, P. J. Gengo, E. M. Luchowski, H. Siegel, D. J. Triggle and R. A. Janis, High affinity binding of a calcium channel antagonist to smooth and cardiac muscle, Biochem. Biophys. Res. Commun. 104: 1604 (1982).CrossRefGoogle Scholar
  34. 34.
    F. J. Ehlert, E. Itoga, W. R. Roeske and H. I. Yamamura, The interaction of [3H]-nitrendipine with receptors for calcium antagonists in the cerebral cortex and heart of rats, Biochem. Biophys. Res. Commun. 104:937 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    H. I. Yamamura, S. J. Enna and M. J. Kuar, eds., “Neuro-transmitter Receptor Binding”, Raven Press, New York (1978).Google Scholar
  36. 36.
    M. D. Hollenberg and P. Cuatrecasas, Distinction of receptor from nonreceptor interactions in binding studies, in: “The Receptors” vol. 1, General Principles and Procedures, R. D. O’Brien, ed., Plenum Press, New York (1979).Google Scholar
  37. 37.
    P. Coutinho, C. A. M. Carvalho and A. P. Carvalho, Calcium uptake related to K+-depolarization and Na+/Ca2+ exchange in sheep brain synaptosomes, Brain Res. (In press).Google Scholar
  38. 38.
    C. A. M. Carvalho and A. P. Carvalho, Effect of temperature and ionophores on the permeability of synaptosomes, J. Neurochem. 33: 309 (1979).PubMedCrossRefGoogle Scholar
  39. 39.
    P. Coutinho, A. P. Carvalho and C. A. M. Carvalho, Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes, J. Neurochem. (In press).Google Scholar
  40. 40.
    E. Layne, Spectrophotometric and turbidimetric method for measuring proteins, in:“ Methods in Enzymology”, vol. 3, S. P. Colowick and N. 0. Kaplan, eds., Academic Press, New York, pp. 447 (1957).Google Scholar
  41. 41.
    D. R. Burt, I. Creese and S. H. Snyder, Binding interactions of lysergic acid dithylamide and related agents with dopamine receptors in the brain, Mol. Pharmacol. 12: 631 (1976).Google Scholar
  42. 42.
    C. R. Oliveira, I. Wajda, A. Lajtha and A. P. Carvalho, Effect of cations and temperature on the binding of [3H]-spiperone to sheep caudate nucleus, Biochem. Pharmacol. 32: 417 (1983).Google Scholar
  43. 43.
    H. Glossmann and D. R. Ferry, Molecular approach to the calcium channel, Drug Development 9: 63 (1983).Google Scholar
  44. 44.
    T. Godfraind, Mechanism of action of calcium entry blockers, Fed. Proc. 40: 2866 (1981).Google Scholar
  45. 45.
    J. M. Van Nueten and P. M. Vanhoutte, Calcium entry blockers and vascular smooth muscle heterogeneity, Fed. Proc. 40: 2862Google Scholar
  46. 46.
    H. Hoick, S. Thorens and G. Haeusler, Does [3H]-nifedipine label the calcium channel in rabbit miocardium ?, J. Rec. Res. 3: 191 (1983).Google Scholar
  47. 47.
    K. Jim, A. Harris, L. B. Rosenberger and D.J. Triggle, Stereo-selective and non-stereoselective effects of D-600 (metoxyverapamil) in smooth muscle preparation, Eur. J. Pharmacol. 76: 67 (1981).PubMedCrossRefGoogle Scholar
  48. 48.
    L. Toll, Calcium antagonists. High affinity binding and inhibition of calcium transport in a clonal cell line, J. Biol. Chem. 257:13189 (1982).PubMedGoogle Scholar
  49. 49.
    B. Weiss and T. L. Wallace, Mechanisms and pharmacological implications of altering calmodulin activity, in: “Calcium and Cell Function”, Vol. I, W. Y. Cheung, ed., Academic Press, New York (1980).Google Scholar
  50. 50.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26: 1 (1973).CrossRefGoogle Scholar
  51. 51.
    H. Reuter, Properties of two inward membrane currents in the heart, Ann. Rev. Physiol. 41: 413 (1979).CrossRefGoogle Scholar
  52. 52.
    A. M. Galzin, presynaptic a2-adrenoreceptor antagonism by verapamil but not by diltiazem in rabbit hypothalamic slices, Br. J. Pharmacol. 78: 571 (1983).PubMedGoogle Scholar
  53. 53.
    M. Titeler, Understanding receptor binding assays, in: “Methods in Neurochemistry”, (In press).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. A. M. Carvalho
    • 1
  • A. P. Carvalho
    • 1
  1. 1.Center for Cell Biology, Department of ZoologyUniversity of CoimbraCoimbra CodexPortugal

Personalised recommendations